【題目】在等差數(shù)列中, ,其前項和為,等比數(shù)列的各項均為正數(shù), ,且, .
(1)求數(shù)列和的通項公式;
(2)令,設(shè)數(shù)列的前項和為,求()的最大值與最小值.
【答案】(1) , ;(2) 的最大值是,最小值是.
【解析】試題分析:(1)由條件列關(guān)于公差與公比的方程組,解得, ,再根據(jù)等差與等比數(shù)列通項公式求通項公式(2)化簡可得,再根據(jù)等比數(shù)列求和公式得,結(jié)合函數(shù)單調(diào)性,可確定其最值
試題解析:(1)設(shè)等差數(shù)列的公差為,等比數(shù)列的公比為,則
解得, ,
所以, .
(2)由(1)得,故,
當為奇數(shù)時, , 隨的增大而減小,所以;
當為偶數(shù)時, , 隨的增大而增大,所以,
令, ,則,故在時是增函數(shù).
故當為奇數(shù)時, ;
當為偶數(shù)時, ,
綜上所述, 的最大值是,最小值是.
科目:高中數(shù)學 來源: 題型:
【題目】如圖,互相垂直的兩條公路AP、AQ旁有一矩形花園ABCD,現(xiàn)欲將其擴建成一個更大的三角形花園AMN,要求點M在射線AP上,點N在射線AQ上,且直線MN過點C,其中AB=36米,AD=20米.記三角形花園AMN的面積為S. (Ⅰ)問:DN取何值時,S取得最小值,并求出最小值;
(Ⅱ)若S不超過1764平方米,求DN長的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù) ,其中a為常數(shù).
(1)若a=1,判斷函數(shù)f(x)的奇偶性;
(2)若函數(shù) 在其定義域上是奇函數(shù),求實數(shù)a的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,A是△BCD所在平面外一點,M、N為△ABC和△ACD重心,BD=6;
(1)求MN的長;
(2)若A、C的位置發(fā)生變化,MN的位置和長度會改變嗎?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓和直線: ,橢圓的離心率,坐標原點到直線的距離為.
(Ⅰ)求橢圓的方程;
(Ⅱ)已知定點,若直線過點且與橢圓相交于兩點,試判斷是否存在直線,使以為直徑的圓過點?若存在,求出直線的方程;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù).
(1)若函數(shù)在其定義域內(nèi)為增函數(shù),求實數(shù)的取值范圍;
(3)設(shè)函數(shù),若在上至少存在一點,使得成立,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù).
(1)求函數(shù)的極大值;
(2)若函數(shù)在區(qū)間 其中上存在極值,求實數(shù)的取值范圍;
(3)如果當時,不等式恒成立,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設(shè)函數(shù)
(1)若在點處的切線斜率為,求的值;
(2)求函數(shù)的單調(diào)區(qū)間;
(3)若,求證:在時, .
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設(shè)函數(shù)f(x)的定義域為D,若存在非零實數(shù)m,使得對于任意x∈M(MD),有(x﹣m)∈D且f(x﹣m)≤f(x),則稱f(x)為M上的m度低調(diào)函數(shù).如果定義域為R的函數(shù)f(x)是奇函數(shù),當x≥0時,f(x)=|x﹣a2|﹣a2 , 且f(x)為R上的5度低調(diào)函數(shù),那么實數(shù)a的取值范圍為 .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com