【題目】已知函數(shù)f(x)=x3+ax2+bx+1(a>0,b∈R)有極值,且導(dǎo)函數(shù)f'(x)的極值點(diǎn)是f(x)的零點(diǎn).(極值點(diǎn)是指函數(shù)取極值時對應(yīng)的自變量的值)
(1)求b關(guān)于a的函數(shù)關(guān)系式,并寫出定義域;
(2)證明:b2>3a;
(3)若f(x),f'(x)這兩個函數(shù)的所有極值之和不小于-,求a的取值范圍.
【答案】(1)b=,定義域?yàn)?3,+∞);(2)見解析;(3)a的取值范圍為(3,6].
【解析】試題分析:(1)先根據(jù)極值定義得x=-為導(dǎo)函數(shù)f'(x)的極值點(diǎn),再根據(jù)f=0得b關(guān)于a的函數(shù)關(guān)系式,最后根據(jù)有極值條件得b-0,解得定義域;(2)因?yàn)?/span>.所以根據(jù)導(dǎo)數(shù)可得其單調(diào)性,根據(jù)單調(diào)性可證不等式(3)根據(jù)韋達(dá)定理化簡f(x),f'(x)這兩個函數(shù)的所有極值之和+2,消去b得-a2+,再利用導(dǎo)數(shù)研究其單調(diào)性,根據(jù)單調(diào)性解不等式,即得a的取值范圍.
試題解析:(1)解 由f(x)=x3+ax2+bx+1,得f'(x)=3x2+2ax+b=3+b-.
當(dāng)x=-時,f'(x)有極小值b-.
因?yàn)?/span>f'(x)的極值點(diǎn)是f(x)的零點(diǎn),
所以f=-+1=0,又a>0,故b=.
因?yàn)?/span>f(x)有極值,故f'(x)=0有實(shí)根,從而b-(27-a3)≤0,即a≥3.
當(dāng)a=3時,f'(x)>0(x≠-1),故f(x)在R上是增函數(shù),f(x)沒有極值;
當(dāng)a>3時,f'(x)=0有兩個相異的實(shí)根x1=,
x2=.
列表如下:
x | (-∞,x1) | x1 | (x1,x2) | x2 | (x2,+∞) |
f'(x) | + | 0 | - | 0 | + |
f(x) | ↗ | 極大值 | ↘ | 極小值 | ↗ |
故f(x)的極值點(diǎn)是x1,x2.
從而a>3.
因此b=,定義域?yàn)?3,+∞).
(2)證明 由(1)知,.
設(shè)g(t)=,則g'(t)=.
當(dāng)t∈時,g'(t)>0,從而g(t)在上單調(diào)遞增.
因?yàn)?/span>a>3,所以a>3,故g(a)>g(3)=,即.
因此b2>3a.
(3)解 由(1)知,f(x)的極值點(diǎn)是x1,x2,且x1+x2=-a,.
從而f(x1)+f(x2)=+a+bx1+1++a+bx2+1=(3+2ax1+b)+(3+2ax2+b)+a()+b(x1+x2)+2=+2=0.
記f(x),f'(x)所有極值之和為h(a),因?yàn)?/span>f'(x)的極值為b-=-a2+,
所以h(a)=-a2+,a>3.
因?yàn)?/span>h'(a)=-a-<0,于是h(a)在(3,+∞)上單調(diào)遞減.
因?yàn)?/span>h(6)=-,于是h(a)≥h(6),故a≤6.
因此a的取值范圍為(3,6].
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某校倡導(dǎo)為特困學(xué)生募捐,要求在自動購水機(jī)處每購買一瓶礦泉水,便自覺向捐款箱中至少投入一元錢.現(xiàn)統(tǒng)計(jì)了連續(xù)5天的售出礦泉水箱數(shù)和收入情況,列表如下:
售出水量(單位:箱) | 7 | 6 | 6 | 5 | 6 |
收入(單位:元) | 165 | 142 | 148 | 125 | 150 |
學(xué)校計(jì)劃將捐款以獎學(xué)金的形式獎勵給品學(xué)兼優(yōu)的特困生,規(guī)定:特困生綜合考核前20名,獲一等獎學(xué)金500元;綜合考核21-50名,獲二等獎學(xué)金300元;綜合考核50名以后的不獲得獎學(xué)金.
(1)若與成線性相關(guān),則某天售出9箱水時,預(yù)計(jì)收入為多少元?
(2)甲乙兩名學(xué)生獲一等獎學(xué)金的概率均為,獲二等獎學(xué)金的概率均為,不獲得獎學(xué)金的概率均為,已知甲乙兩名學(xué)生獲得哪個等級的獎學(xué)金相互獨(dú)立,求甲乙兩名學(xué)生所獲得獎學(xué)金之和的分布列及數(shù)學(xué)期望;
附:回歸方程,其中.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的離心率為,、分別為橢圓的左、右頂點(diǎn),點(diǎn)滿足.
(Ⅰ)求橢圓的方程;
(Ⅱ)設(shè)直線經(jīng)過點(diǎn)且與交于不同的兩點(diǎn)、,試問:在軸上是否存在點(diǎn),使得直線 與直線的斜率的和為定值?若存在,請求出點(diǎn)的坐標(biāo)及定值;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).其中
(1)當(dāng)時,求函數(shù)的單調(diào)區(qū)間;
(2)若對于任意,都有恒成立,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,曲線的參數(shù)方程為(為參數(shù), ),以原點(diǎn)為極點(diǎn), 軸正半軸為極軸,建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.
(1)求曲線與的直角坐標(biāo)方程;
(2)當(dāng)與有兩個公共點(diǎn)時,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知, 滿足約束條件,若取得最大值的最優(yōu)解不唯一,則實(shí)數(shù)的值為__________.
【答案】或
【解析】由題可知若取得最大值的最優(yōu)解不唯一則必平行于可行域的某一邊界,如圖:要Z最大則直線與y軸的截距最大即可,當(dāng)a<0時,則平行AC直線即可故a=-2,當(dāng)a>0時,則直線平行AB即可,故a=1
點(diǎn)睛:線性規(guī)劃為?碱}型,解決此題務(wù)必要理解最優(yōu)解個數(shù)為無數(shù)個時的條件是什么,然后根據(jù)幾何關(guān)系求解即可
【題型】填空題
【結(jié)束】
16
【題目】《數(shù)書九章》三斜求積術(shù):“以小斜冪,并大斜冪,減中斜冪,余半之,自乘于上;以小斜冪乘大斜冪,減上,余四約一,為實(shí),一為從隅,開平方得積”.秦九韶把三角形的三條邊分別稱為小斜、中斜和大斜,“術(shù)”即方法.以, , , 分別表示三角形的面積,大斜,中斜,小斜; , , 分別為對應(yīng)的大斜,中斜,小斜上的高;則 .若在中, , ,根據(jù)上述公式,可以推出該三角形外接圓的半徑為__________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某市一批養(yǎng)殖專業(yè)戶投資石金錢龜養(yǎng)殖業(yè),行業(yè)協(xié)會為了了解市場行情,對石金錢龜幼苖銷售價格進(jìn)行調(diào)查。2017年12月隨機(jī)抽取500戶銷售石金錢龜幼苖的平均價格,得到如下不完整的頻率分布統(tǒng)計(jì)表:
(Ⅰ)完成統(tǒng)計(jì)表。
(Ⅱ)為了向石金錢龜養(yǎng)殖戶提供更好的幼苖銷售參考,協(xié)會決定2018年1月份從第1,3,5組中用分層抽樣方法取出7戶出售幼龜價格跟蹤調(diào)查,求第1,3,5組1月份接受調(diào)查的戶數(shù)。
(Ⅲ)在(Ⅱ)的前提下,協(xié)會決定從選出的7個養(yǎng)殖戶中隨機(jī)抽取3戶總結(jié)銷售經(jīng)驗(yàn).為了鼓勵養(yǎng)殖戶支持調(diào)查工作,協(xié)會決定:發(fā)給第1組被抽到的每戶幸運(yùn)獎獎金210元,第3組被抽到的每戶幸運(yùn)獎獎金70元,第5組被抽到的每戶幸運(yùn)獎獎金140元.記發(fā)出的幸運(yùn)獎總獎金額為元,求的分布列和數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),.
(1)設(shè)函數(shù),試討論函數(shù)零點(diǎn)的個數(shù);
(2)若,,求證:
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com