【題目】過兩點(diǎn)A(1,0),B(2,1),且圓心在直線x﹣y=0上的圓的標(biāo)準(zhǔn)方程是
【答案】(x﹣1)2+(y﹣1)2=1
【解析】解:∵點(diǎn)A(1,0)、B(2,1),
∴直線AB的斜率為k= =1,線段AB的中點(diǎn)為( , ),
由此可得AB的垂直平分線的斜率k′=﹣1
∴線段AB的垂直平分線的方程為y﹣ =﹣(x﹣ ),化簡得y=﹣x+2,
∵點(diǎn)A、B在圓上,且圓心在直線x﹣y=0上,
∴解方程組 ,得 ,
可得圓心的坐標(biāo)為(1,1),
圓的半徑為r=|AC|= =1,
∴所求圓的標(biāo)準(zhǔn)方程為(x﹣1)2+(y﹣1)2=1.
所以答案是:(x﹣1)2+(y﹣1)2=1.
【考點(diǎn)精析】通過靈活運(yùn)用圓的標(biāo)準(zhǔn)方程,掌握圓的標(biāo)準(zhǔn)方程:;圓心為A(a,b),半徑為r的圓的方程即可以解答此題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=ax2-ln x,a∈R.
(1)當(dāng)a=1時(shí),求曲線y=f(x)在點(diǎn)(1,f(1))處的切線方程.
(2)討論f(x)的單調(diào)性.
(3)是否存在a,使得方程f(x)=2有兩個(gè)不等的實(shí)數(shù)根?若存在,求出a的取值范圍;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)y=f(x﹣1)的圖象關(guān)于點(diǎn)(1,0)對稱,且當(dāng)x∈(﹣∞,0),f(x)+xf′(x)<0成立.若a=(20.2)f(20.2),b=(ln2)f(ln2),c=(log2 )f(log2 ),則a,b,c的大小關(guān)系是( )
A.a>b>c
B.b>a>c
C.c>a>b
D.a>c>b
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)f(x)是定義在R上的偶函數(shù),對任意的x∈R,都有f(x+4)=f(x),且當(dāng)x∈[﹣2,0]時(shí),f(x)=( )x﹣6,若在區(qū)間(﹣2,6]內(nèi)關(guān)于x的方程f(x)﹣loga(x+2)=0(a>1)恰有3個(gè)不同的實(shí)數(shù)根,求實(shí)數(shù)a的取值范圍是( )
A.(1,2)
B.(2,+∞)
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知向量 =(1,2), =(﹣2,m), = +(t2+1) , =﹣k + ,m∈R,k、t為正實(shí)數(shù).
(1)若 ∥ ,求m的值;
(2)若 ⊥ ,求m的值;
(3)當(dāng)m=1時(shí),若 ⊥ ,求k的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某中學(xué)為了調(diào)研學(xué)生的數(shù)學(xué)成績和物理成績是否有關(guān)系,隨機(jī)抽取了189名學(xué)生進(jìn)行調(diào)查,調(diào)查結(jié)果如下:在數(shù)學(xué)成績較好的94名學(xué)生中,有54名學(xué)生的物理成績較好,有40名學(xué)生的物理成績較差;在成績較差的95名學(xué)生中,有32名學(xué)生的物理成績較好,有63名學(xué)生的物理成績較差.根據(jù)以上的調(diào)查結(jié)果,利用獨(dú)立性檢驗(yàn)的方法可知,約有________的把握認(rèn)為“學(xué)生的數(shù)學(xué)成績和物理成績有關(guān)系”.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為調(diào)查某地區(qū)老人是否需要志愿者提供幫助,用簡單隨機(jī)抽樣方法從該地區(qū)調(diào)查了500位老年人,結(jié)果如下:
是否需要志愿 性別 | 男 | 女 |
需要 | 40 | 30 |
不需要 | 160 | 270 |
附:
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】觀察以下各等式:
tan 30°+tan 30°+tan 120°=tan 30°·tan 30°·tan 120°,
tan 60°+tan 60°+tan 60°=tan 60°·tan 60°·tan 60°,
tan 30°+tan 45°+tan 105°=tan 30°·tan 45°·tan 105°.
分析上述各式的共同特點(diǎn),猜想出表示的一般規(guī)律,并加以證明.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某高校共有學(xué)生15 000人,其中男生10 500人,女生4500人.為調(diào)查該校學(xué)生每周平均體育運(yùn)動(dòng)時(shí)間的情況,采用分層抽樣的方法,收集300位學(xué)生每周平均體育運(yùn)動(dòng)時(shí)間(單位:h)的樣本數(shù)據(jù).
(1)應(yīng)收集多少位女生的樣本數(shù)據(jù)?
(2)根據(jù)這300個(gè)樣本數(shù)據(jù),得到學(xué)生每周平均體育運(yùn)動(dòng)時(shí)間的頻率分布直方圖(如圖所示),其中樣本數(shù)據(jù)的分組區(qū)間為[0,2],(2,4],(4,6],(6,8],(8,10],(10,12].估計(jì)該校學(xué)生每周平均體育運(yùn)動(dòng)時(shí)間超過4 h的概率.
(3)在樣本數(shù)據(jù)中,有60位女生的每周平均體育運(yùn)動(dòng)時(shí)間超過4 h,請完成下面的2×2列聯(lián)表,并判斷是否有95%的把握認(rèn)為“該校學(xué)生的每周平均體育運(yùn)動(dòng)時(shí)間與性別有關(guān)”?
男生 | 女生 | 總計(jì) | |
每周平均體育運(yùn)動(dòng)時(shí)間不超過4h | |||
每周平均體育運(yùn)動(dòng)時(shí)間超過4h | |||
總計(jì) |
附:
P(K2≥k0) | 0.100 | 0.050 | 0.010 | 0.005 |
k0 | 2.706 | 3.841 | 6.635 | 7.879 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com