(本小題滿分12分)
如圖,已知,分別是橢圓)的左、右焦點(diǎn),且橢圓的離心率,也是拋物線的焦點(diǎn).

(Ⅰ)求橢圓的方程;
(Ⅱ)過點(diǎn)的直線交橢圓,兩點(diǎn),且,點(diǎn)關(guān)于軸的對稱點(diǎn)為,求直線的方程.
解:(Ⅰ)因?yàn)閽佄锞的焦點(diǎn)是,
,得,則,
故橢圓的方程為
(Ⅱ)顯然直線的斜率不存在時(shí)不符合題意,可設(shè)直線,設(shè),,由于,
,聯(lián)立,
,……,……②,代入①、②得,
,……③ ,……④ 由③、④得,
,,
(i)若時(shí),,,
,,
直線的方程是;
(ii)當(dāng)時(shí),同理可求直線的方程是
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知某橢圓的焦點(diǎn)F1(-4,0),F(xiàn)2(4,0),過點(diǎn)F2并垂直于x軸的直線與橢圓的一個(gè)交點(diǎn)為B,且|F1B|+|F2B|=10,橢圓上不同兩點(diǎn)A(x1,y1),C(x2,y2)滿足條件|F2A|,|F2B|,|F2C|成等差數(shù)列.(1)求該橢圓的方程;(2)求弦AC中點(diǎn)的橫坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

在平面直角坐標(biāo)系中,已知橢圓.如圖所示,斜率為且不過原點(diǎn)的直線交橢圓,兩點(diǎn),線段的中點(diǎn)為,射線交橢圓于點(diǎn),交直線于點(diǎn).
(Ⅰ)求的最小值;
(Ⅱ)若?,(i)求證:直線過定點(diǎn);
(ii)試問點(diǎn),能否關(guān)于軸對稱?若能,求出此時(shí)的外接圓方程;若不能,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知橢圓的離心率為,且兩個(gè)焦點(diǎn)和短軸的一個(gè)端點(diǎn)是一個(gè)等腰三角形的頂點(diǎn).斜率為的直線過橢圓的上焦點(diǎn)且與橢圓相交于,兩點(diǎn),線段的垂直平分線與軸相交于點(diǎn)
(Ⅰ)求橢圓的方程;
(Ⅱ)求的取值范圍;
(Ⅲ)試用表示△的面積,并求面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

直線經(jīng)過橢圓的一個(gè)焦點(diǎn)和一個(gè)頂點(diǎn),則該橢圓的離心率為
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知點(diǎn)P是橢圓C:上的動點(diǎn),F(xiàn)1F2分別為左、右焦點(diǎn),O為坐標(biāo)原點(diǎn),則的取值范圍是

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分14分)
已知橢圓的兩焦點(diǎn)為,并且經(jīng)過點(diǎn).
(1)求橢圓的方程;
(2)已知圓:,直線:,證明當(dāng)點(diǎn)在橢圓上運(yùn)動時(shí),直線與圓恒相交;并求直線被圓所截得的弦長的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知點(diǎn)A(5,0)和⊙B:,P是⊙B上的動點(diǎn),直線BP與線段AP的垂直平分線交于點(diǎn)Q,則點(diǎn)Q(x,y)所滿足的軌跡方程為 。 ▲ )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

橢圓的焦點(diǎn)為F1,F(xiàn)2,P為橢圓上一點(diǎn),若,則
A.2B.4C.6D.8

查看答案和解析>>

同步練習(xí)冊答案