已知某橢圓的焦點F1(-4,0),F(xiàn)2(4,0),過點F2并垂直于x軸的直線與橢圓的一個交點為B,且|F1B|+|F2B|=10,橢圓上不同兩點A(x1,y1),C(x2,y2)滿足條件|F2A|,|F2B|,|F2C|成等差數(shù)列.(1)求該橢圓的方程;(2)求弦AC中點的橫坐標.
解:(1)由橢圓的定義及已知條件知:2a=|F1B|+|F2B|=10,所以a=5,又c=4,故b=3,.故橢圓的方程為.       (4分)
(2)由點B(4,y0)在橢圓上,得|F2B|=|y0|=,因為橢圓的右準線方程為,
離心率.所以根據(jù)橢圓的第二定義,有
.因為|F2A|,|F2B|,|F2C|成等差數(shù)列,
,所以:x1+x2="8,  " 從而弦AC的中點的橫坐標為
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源:不詳 題型:單選題

已知橢圓的焦點重合,則該橢圓的離心率是(     )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題滿分13分)
已知橢圓的焦點分別為,且過點
(1)求橢圓的標準方程;
(2)設(shè)為橢圓內(nèi)一點,直線交橢圓兩點,且為線段的中點,求直線的方程.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本題滿分15分)已知A(1,1)是橢圓)上一點,F1­,F(xiàn)2
 
是橢圓上的兩焦點,且滿足 .
(I)求橢圓方程;
(Ⅱ)設(shè)C,D是橢圓上任兩點,且直線AC,AD的斜率分別為  ,若存在常數(shù) 使/,求直線CD的斜率.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(12分)已知分別是橢圓的左、右 焦點,已知點 滿足,且。設(shè)是上半橢圓上且滿足的兩點。
(1)求此橢圓的方程;
(2)若,求直線AB的斜率。

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題滿分12分)
如圖,已知,分別是橢圓)的左、右焦點,且橢圓的離心率,也是拋物線的焦點.

(Ⅰ)求橢圓的方程;
(Ⅱ)過點的直線交橢圓,兩點,且,點關(guān)于軸的對稱點為,求直線的方程.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

橢圓的焦點坐標是(   )
A.B.
C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

在圓上任取一點,過點軸的垂線段為垂足.當點在圓上運動時,線段的中點形成軌跡
(1)求軌跡的方程;
(2)若直線與曲線交于兩點,為曲線上一動點,求面積的最大值

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(12分)設(shè)、分別是橢圓,的左、右焦點,是該橢圓上一個動點,且,
、求橢圓的方程;
、求出以點為中點的弦所在的直線方程。

查看答案和解析>>

同步練習冊答案