正方體ABCD-A1B1C1D1中,E為A1C1的中點,則直線CE垂直于  (   )
A.直線ACB.直線B1D1
C.直線A1D1D.直線A1A
B
解:因為正方體ABCD-A1B1C1D1中,E為A1C1的中點,則利用三垂線定理可知,直線CE垂直于直線B1D1,選B
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖,在三棱錐S—ABC中,SC⊥平面ABC,點P、M分別是SC和SB的中點,設
PM=AC=1,∠ACB=90°,直線AM與直線SC所成的角為60°.
(I)求證:;(Ⅱ)求證:平面MAP⊥平面SAC;
( Ⅲ)求銳二面角M—AB—C的大小的余弦值;

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題滿分12分)
如圖,三棱柱ABC—A1B1C1中,底面為正三角形,側(cè)棱與底面垂直,D是BC的中點,AA1=AB=1。

(1)  求證:A1C∥平面AB1D;
(2)  求點C到平面AB1D的距離。

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本題滿分14分)如圖,三棱柱ABC—A1B1C1中,AA1面ABC,BCAC,BC=AC=2,D為AC的中點。

(1)若AA1=2,求證:;
(2)若AA1=3,求二面角C1—BD—C的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題滿分12分)在四棱錐中,平面,底面為矩形,.

(Ⅰ)當時,求證:;
(Ⅱ)若邊上有且只有一個點,使得,求此時二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

點P為ΔABC所在平面外一點,PO⊥平面ABC,垂足為O,若PA=PB=PC,則點O是ΔABC的(  )                                   
A.內(nèi)心B.外心C.重心D.垂心

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

是兩個不同的平面,、是兩條不同的直線,給出下列4個命題,其中正確命題是(    )
A.若,,則
B.若,,,則
C.若,,則
D.若、在平面內(nèi)的射影互相垂直,則

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

本題滿分14分)
四棱錐P-ABCD中,底面ABCD為直角梯形,,AD∥BC, AB="BC=2," AD="4,"
PA⊥底面ABCD,PD與底面ABCD成角,E是PD的中點.
(1)點H在AC上且EH⊥AC,求的坐標;
(2)求AE與平面PCD所成角的余弦值;

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

,是兩條不同的直線,是兩個不同的平面,下列命題中正確的是(   )
A.若,,則
B.若,,則;
C.若,,則;
D.若,,則.

查看答案和解析>>

同步練習冊答案