【題目】如圖,在平面直角坐標(biāo)系xoy中,已知F1 , F2分別是橢圓E: 的左、右焦點(diǎn),A,B分別是橢圓E的左、右頂點(diǎn),且 .
(1)求橢圓E的離心率;
(2)已知點(diǎn)D(1,0)為線(xiàn)段OF2的中點(diǎn),M 為橢圓E上的動(dòng)點(diǎn)(異于點(diǎn)A、B),連接MF1并延長(zhǎng)交橢圓E于點(diǎn)N,連接MD、ND并分別延長(zhǎng)交橢圓E于點(diǎn)P、Q,連接PQ,設(shè)直線(xiàn)MN、PQ的斜率存在且分別為k1、k2 , 試問(wèn)是否存在常數(shù)λ,使得k1+λk2=0恒成立?若存在,求出λ的值;若不存在,說(shuō)明理由.
【答案】
(1)解:∵ ,∴ .
∴a+c=5(a﹣c),化簡(jiǎn)得2a=3c,
故橢圓E的離心率為
(2)解:存在滿(mǎn)足條件的常數(shù)λ, .
∵點(diǎn)D(1,0)為線(xiàn)段OF2的中點(diǎn),∴c=2,從而a=3, ,
左焦點(diǎn)F1(﹣2,0),橢圓E的方程為 .
設(shè)M(x1,y1),N(x2,y2),P(x3,y3),Q(x4,y4),則直線(xiàn)MD的方程為 ,
代入橢圓方程 ,整理得, .
∵ ,∴ .
從而 ,故點(diǎn) .同理,點(diǎn) .
∵三點(diǎn)M、F1、N共線(xiàn),∴ ,從而x1y2﹣x2y1=2(y1﹣y2).
從而 .
故 ,從而存在滿(mǎn)足條件的常數(shù)λ,
【解析】(1)由 ,得 ,從而有a+c=5(a﹣c),結(jié)合離心率定義即可求得答案;(2)由點(diǎn)D(1,0)為線(xiàn)段OF2的中點(diǎn)可求得c值,進(jìn)而可求出a值、b值,得到橢圓方程,設(shè)M(x1 , y1),N(x2 , y2),P(x3 , y3),Q(x4 , y4),則直線(xiàn)MD的方程為 ,與橢圓方程聯(lián)立及韋達(dá)定理可把P、Q坐標(biāo)用M、N坐標(biāo)表示出來(lái),再根據(jù)三點(diǎn)M、F1、N共線(xiàn)及斜率公式可得k1、k2間的關(guān)系式,由此可得答案.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)集合A={x∈R|2x﹣8=0},B={x∈R|x2﹣2(m+1)x+m2=0}
(1)若m=4,求A∪B;
(2)若A∪B=A,求實(shí)數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】祖暅?zhǔn)悄媳背瘯r(shí)代的偉大科學(xué)家,5世紀(jì)末提出體積計(jì)算原理,即祖暅原理:“冪勢(shì)既同,則積不容異”.意思是:夾在兩個(gè)平行平面之間的兩個(gè)幾何體,被平行于這兩個(gè)平面的任何一個(gè)平面所截,如果截面面積都相等,那么這兩個(gè)幾何體的體積一定相等.現(xiàn)有以下四個(gè)幾何體:圖①是從圓柱中挖出一個(gè)圓錐所得的幾何體;圖②、圖③、圖④分別是圓錐、圓臺(tái)和半球,則滿(mǎn)足祖暅原理的兩個(gè)幾何體為( 。
A. ①② B. ①③ C. ②④ D. ①④
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=3x2﹣2ax﹣b,其中a,b是實(shí)數(shù).
(1)若不等式f(x)≤0的解集是[0,6],求ab的值;
(2)若b=3a,對(duì)任意x∈R,都有f(x)≥0,且存在實(shí)數(shù)x,使得f(x)≤2﹣ a,求實(shí)數(shù)a的取值范圍;
(3)若方程有一個(gè)根是1,且a,b>0,求 的最小值,及此時(shí)a,b的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知拋物線(xiàn)y2=4x的焦點(diǎn)為F,過(guò)點(diǎn)F的直線(xiàn)交拋物線(xiàn)于A(yíng),B兩點(diǎn).
(1)若 =3 ,求直線(xiàn)AB的斜率;
(2)設(shè)點(diǎn)M在線(xiàn)段AB上運(yùn)動(dòng),原點(diǎn)O關(guān)于點(diǎn)M的對(duì)稱(chēng)點(diǎn)為C,求四邊形OACB面積的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某地區(qū)山體大面積滑坡,政府準(zhǔn)備調(diào)運(yùn)一批賑災(zāi)物資共裝26輛車(chē),從某市出發(fā)以v(km/h)的速度勻速直達(dá)災(zāi)區(qū),如果兩地公路長(zhǎng)400km,且為了防止山體再次坍塌,每?jī)奢v車(chē)的間距保持在( )2km.(車(chē)長(zhǎng)忽略不計(jì))設(shè)物資全部運(yùn)抵災(zāi)區(qū)的時(shí)間為y小時(shí),請(qǐng)建立y關(guān)于每車(chē)平均時(shí)速v(km/h)的函數(shù)關(guān)系式,并求出車(chē)輛速度為多少千米/小時(shí),物資能最快送到災(zāi)區(qū)?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】山西某公司有一批專(zhuān)業(yè)技術(shù)人員,對(duì)他們進(jìn)行年齡狀況和接受教育程度(本科學(xué)歷)的調(diào)查,其結(jié)果(人數(shù)分布)如表:
學(xué)歷 | 35歲以下 | 3550歲 | 50歲以上 |
本科 | 80 | 30 | 20 |
研究生 | 20 |
(Ⅰ)用分層抽樣的方法在歲年齡段的專(zhuān)業(yè)技術(shù)人員中抽取一個(gè)容量為10的樣本,將該樣本看成一個(gè)總體,從中任取3人,求至少有1人的學(xué)歷為研究生的概率;
(Ⅱ)在這個(gè)公司的專(zhuān)業(yè)技術(shù)人員中按年齡狀況用分層抽樣的方法抽取個(gè)人,其中35歲以下48人,50歲以上10人,再?gòu)倪@個(gè)人中隨機(jī)抽取出1人,此人的年齡為50歲以上的概率為,求、的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)直線(xiàn)x=t與函數(shù)f(x)=x2 , g(x)=lnx的圖象分別交于點(diǎn)M,N,則當(dāng)|MN|達(dá)到最小時(shí)t的值為 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知{an}是一個(gè)等差數(shù)列,且a2=1,a5=﹣5.
(Ⅰ)求{an}的通項(xiàng)an;
(Ⅱ)求{an}前n項(xiàng)和Sn的最大值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com