【題目】如圖1,在中,分別是邊上的中點(diǎn),將沿折起到的位置,使如圖2.
(Ⅰ)求證:平面平面;
(Ⅱ)求直線與平面所成角的正弦值.
【答案】(Ⅰ)證明見(jiàn)解析;(Ⅱ)
【解析】
(Ⅰ)由已知可得,,可證平面,進(jìn)而有平面,即可證明結(jié)論;
(Ⅱ)由(Ⅰ)得平面平面,在正中過(guò)作,垂足為,則有平面,以為坐標(biāo)原點(diǎn)建立空間直角坐標(biāo)系,確定坐標(biāo),求出平面法向量坐標(biāo),按照空間向量線面角公式,即可求解.
(Ⅰ)在圖1中,分別為邊中點(diǎn),
所以,又因?yàn)?/span>所以
在圖2中,且,
則平面,又因?yàn)?/span>,所以平面
又因?yàn)?/span>平面,所以平面平面
(Ⅱ)由(Ⅰ)知平面,且平面
所以平面平面,又因?yàn)槠矫?/span>平面
在正中過(guò)作,垂足為,則為中點(diǎn),
且平面,分別以,梯形中位線,
所在直線為軸,軸,軸建立如圖坐標(biāo)系,
則.
.
設(shè)平面的法向量為,
則,
令,則,
平面的一個(gè)法向量為.
設(shè)直線與平面所成角為,
則.
所以直線與平面所成角的正弦值為.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,用種不同的顏色給圖中的個(gè)格子涂色,每個(gè)格子涂一種顏色,要求最多使用種顏色且相鄰的兩個(gè)格子顏色不同,則不同的涂色方法共有( )
A.種B.種C.種D.種
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】近年來(lái),國(guó)資委.黨委高度重視扶貧開(kāi)發(fā)工作,堅(jiān)決貫徹落實(shí)中央扶貧工作重大決策部署,在各個(gè)貧困縣全力推進(jìn)定點(diǎn)扶貧各項(xiàng)工作,取得了積極成效,某貧困縣為了響應(yīng)國(guó)家精準(zhǔn)扶貧的號(hào)召,特地承包了一塊土地,已知土地的使用面積以及相應(yīng)的管理時(shí)間的關(guān)系如下表所示:
土地使用面積(單位:畝) | |||||
管理時(shí)間(單位:月) |
并調(diào)查了某村名村民參與管理的意愿,得到的部分?jǐn)?shù)據(jù)如下表所示:
愿意參與管理 | 不愿意參與管理 | |
男性村民 | ||
女性村民 |
求出相關(guān)系數(shù)的大小,并判斷管理時(shí)間與土地使用面積是否線性相關(guān)?
若以該村的村民的性別與參與管理意愿的情況估計(jì)貧困縣的情況,則從該貧困縣中任取人,記取到不愿意參與管理的男性村民的人數(shù)為,求的分布列及數(shù)學(xué)期望.
參考公式:,參考數(shù)據(jù):,,
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】“日行一萬(wàn)步,健康你一生”的養(yǎng)生觀念已經(jīng)深入人心,由于研究需要,某學(xué)生收集了“微信運(yùn)動(dòng)”中100名成員一天的行走步數(shù),對(duì)這100個(gè)數(shù)據(jù)按組距為2500進(jìn)行分組,并統(tǒng)計(jì)整理,繪制了如下尚不完整的統(tǒng)計(jì)表:
步數(shù)分組統(tǒng)計(jì)表(設(shè)步數(shù)為)
組別 | 步數(shù)分組 | 頻數(shù) |
10 | ||
20 | ||
10 | ||
已知達(dá)到“日行一萬(wàn)步,健康你一生”標(biāo)準(zhǔn)的頻率為.
(1)求,的值;
(2)以頻率估計(jì)概率,從該“微信運(yùn)動(dòng)”中任意抽取3名成員,記其中達(dá)到“日行一萬(wàn)步,健康你一生”標(biāo)準(zhǔn)的人數(shù)為,求的分布列和數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖是的導(dǎo)函數(shù)的圖象,對(duì)于下列四個(gè)判斷,其中正確的判斷是( ).
A.在上是增函數(shù);
B.當(dāng)時(shí),取得極小值;
C.在上是增函數(shù)、在上是減函數(shù);
D.當(dāng)時(shí),取得極大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓 的離心率為,過(guò)橢圓的焦點(diǎn)且與長(zhǎng)軸垂直的弦長(zhǎng)為1.
(1)求橢圓C的方程;
(2)設(shè)點(diǎn)M為橢圓上第一象限內(nèi)一動(dòng)點(diǎn),A,B分別為橢圓的左頂點(diǎn)和下頂點(diǎn),直線MB與x軸交于點(diǎn)C,直線MA與y軸交于點(diǎn)D,求證:四邊形ABCD的面積為定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某水果經(jīng)銷商為了對(duì)一批剛上市水果進(jìn)行合理定價(jià),將該水果按事先擬定的價(jià)格進(jìn)行試銷,得到一組銷售數(shù)據(jù),如表所示:
試銷單價(jià)(元/公斤) | 16 | 17 | 18 | 19 | 20 |
日銷售量(公斤) | 168 | 146 | 120 | 90 | 56 |
(1)已知變量具有線性相關(guān)關(guān)系,求該水果日銷售量(公斤)關(guān)于試銷單價(jià)(元/公斤)的線性回歸方程,并據(jù)此分析銷售單價(jià)時(shí),日銷售量的變化情況;
(2)若該水果進(jìn)價(jià)為每公斤元,預(yù)計(jì)在今后的銷售中,日銷售量和售價(jià)仍然服從(1)中的線性相關(guān)關(guān)系,該水果經(jīng)銷商如果想獲得最大的日銷售利潤(rùn),此水果的售價(jià)應(yīng)定為多少元?
(參考數(shù)據(jù)及公式:,,,線性回歸方程,,)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知點(diǎn)P(-1,0),設(shè)不垂直于x軸的直線l與拋物線y2=2x交于不同的兩點(diǎn)A、B,若x軸是∠APB的角平分線,則直線l一定過(guò)點(diǎn)
A. (,0) B. (1,0) C. (2,0) D. (-2,0)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com