在數(shù)列中,, 且.
(1)求,的值;
(2)證明:數(shù)列是等比數(shù)列,并求的通項公式;
(3)求數(shù)列的前項和.
(1),.
(2)的通項公式為.
(3)
.
【解析】
試題分析:(1)解:∵, 且,
∴,
. 2分
(2)證明:
∵,
∴數(shù)列是首項為,公比為的等比數(shù)列.
∴,即,
∴的通項公式為. 8分
(3)∵的通項公式為,
∴
. 12分
考點:數(shù)列的遞推公式,數(shù)列的通項公式,等差數(shù)列、等比數(shù)列的證明,“分組求和法”。
點評:中檔題,首先根據(jù)遞推公式,確定得到的表達(dá)式。進(jìn)一步確定數(shù)列的通項公式。 “分組求和法”“裂項相消法”“錯位相減法”是高考常?疾榈臄(shù)列求和方法。
科目:高中數(shù)學(xué) 來源:2015屆海南瓊海嘉積中學(xué)高一下學(xué)期教學(xué)監(jiān)測(二)理數(shù)學(xué)卷(解析版) 題型:解答題
在數(shù)列中,,且滿足 .
(Ⅰ)求及數(shù)列的通項公式;
(Ⅱ)設(shè)求數(shù)列的前項和.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年甘肅省高三上學(xué)期第三次月考數(shù)學(xué)文卷 題型:解答題
(12分)在數(shù)列中,,且對任意都有成立,令(1)求數(shù)列的通項公式;(2)求數(shù)列的前n項和。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2010年山西大學(xué)附中高二上學(xué)期第一次階段考試數(shù)學(xué)卷 題型:填空題
在數(shù)列中,,且當(dāng)時有,則數(shù)列的通項公式為 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2010年吉林省高二上學(xué)期第一次月考數(shù)學(xué)卷 題型:填空題
在數(shù)列中,,且對于任意正整數(shù)n,都有,則= 。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2010年高考試題(天津卷)解析版(理) 題型:解答題
在數(shù)列中,,且對任意.,,成等差數(shù)列,其公差為。
(Ⅰ)若=,證明,,成等比數(shù)列()
(Ⅱ)若對任意,,,成等比數(shù)列,其公比為。
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com