【題目】設函數(shù).
(1)當時,求函數(shù)的單調(diào)區(qū)間.
(2)當時,討論函數(shù)與圖象的交點個數(shù).
【答案】(1)函數(shù)的增區(qū)間是,減區(qū)間是;(2)有一個交點.
【解析】分析:(1)求出,在定義域內(nèi),分別令求得的范圍,可得函數(shù)增區(qū)間,求得的范圍,可得函數(shù)的減區(qū)間;(2)問題轉(zhuǎn)化為求函數(shù)的零點個數(shù)問題,通過求導,得到函數(shù)單調(diào)區(qū)間,求出的極小值,利用數(shù)形結(jié)合思想、分類討論思想可求出的函數(shù)的零點個數(shù)即和的交點個數(shù).
詳解:(1)函數(shù)的定義域為,
當時,,
當時,,函數(shù)單調(diào)遞減,
當時,,函數(shù)單調(diào)遞增。
所以函數(shù)的單調(diào)遞增區(qū)間是,單調(diào)遞減區(qū)間是.
(2)令
問題等價于求函數(shù)的零點個數(shù),
當時,,有唯一零點.
當,
當時,,函數(shù)為減函數(shù),
注意到
所以有唯一零點;
當時,或時時
所以函數(shù)在和上單調(diào)遞減,在上單調(diào)遞增,
注意到
所以有唯一零點;
當時,函數(shù)在和上單調(diào)遞減,在上單調(diào)遞增,
易得,所以,
而所以有唯一零點;
綜上,函數(shù)有唯一零點,即兩函數(shù)圖象總有一個交點.
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)= ln(a x)+bx在點(1,f(1))處的切線是y=0;
(I)求函數(shù)f(x)的極值;
(II)當恒成立時,求實數(shù)m的取值范圍(e為自然對數(shù)的底數(shù))
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】(題文)如圖,有一塊半橢圓形鋼板,其長半軸長為,短半軸長為,計劃將此鋼板切割成等腰梯形的形狀,下底是半橢圓的短軸,上底的端點在橢圓上,梯形面積為.
(1)當,時,求梯形的周長(精確到);
(2)記,求面積以為自變量的函數(shù)解析式,并寫出其定義域.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】以平面直角坐標系的原點為極點,軸的正半軸為極軸,建立極坐標系,兩種坐標系中取相同的長度單位.若直線的參數(shù)方程為為參數(shù)),曲線的極坐標方程為.
(I)求直線的普通方程與曲線的直角坐標方程;
(II)設直線與曲線相交于兩點,若點的直角坐標為,求的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】用0,1,2,3,4五個數(shù)字組成五位數(shù).
(1)求沒有重復數(shù)字的五位數(shù)的個數(shù);
(2)求沒有重復數(shù)字的五位偶數(shù)的個數(shù).
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,AB是⊙O的直徑,C是圓周上不同于A,B的任意一點,PA⊥平面ABC,則四面體P-ABC的四個面中,直角三角形的個數(shù)有( 。
A. 4個B. 3個C. 2個D. 1個
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知數(shù)列{an}的前n項和為Sn , Sn=n2+2n,bn=anan+1cos(n+1)π,數(shù)列{bn} 的前n項和為Tn , 若Tn≥tn2對n∈N*恒成立,則實數(shù)t的取值范圍是 .
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】前不久商丘市因環(huán)境污染嚴重被環(huán)保部約談后,商丘市近期加大環(huán)境治理力度,如表提供了商丘某企業(yè)節(jié)能降耗技術(shù)改造后生產(chǎn)甲產(chǎn)品過程中記錄的產(chǎn)量x(噸)與相應的生產(chǎn)能耗y(噸標準煤)的幾組對應數(shù)據(jù).
(1)請根據(jù)上表提供的數(shù)據(jù),用最小二乘法求出y關于x的線性回歸方程y=bx+a;
(2)已知該企業(yè)技改前100噸甲產(chǎn)品的生產(chǎn)能耗為90噸標準煤,試根據(jù)(1)求出的線性回歸方程,預測生產(chǎn)100噸甲產(chǎn)品的生產(chǎn)能耗比技改前降低了多少噸標準煤?
(參考數(shù)值:3×2.5+4×3+5×4+6×4.5=66.5)參考公式:=,.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知點F(1,0),點A是直線l1:x=﹣1上的動點,過A作直線l2 , l1⊥l2 , 線段AF的垂直平分線與l2交于點P. (Ⅰ)求點P的軌跡C的方程;
(Ⅱ)若點M,N是直線l1上兩個不同的點,且△PMN的內(nèi)切圓方程為x2+y2=1,直線PF的斜率為k,求 的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com