【題目】對于定義域為的函數(shù),若同時滿足下列三個條件:① ;② 當(dāng),且時,都有 ;③ 當(dāng),且時,都有, 則稱為“偏對稱函數(shù)”.現(xiàn)給出下列三個函數(shù): ; ; 則其中是“偏對稱函數(shù)”的函數(shù)個數(shù)為
A. B. C. D.
【答案】C
【解析】(1)經(jīng)驗證可得,函數(shù)都滿足條件①;
(2)由可得或,即條件②等價于函數(shù)函數(shù)f(x)在區(qū)間(∞,0)上單調(diào)遞減,在區(qū)間(0,+∞)上單調(diào)遞增.
(ⅰ)對于函數(shù),由于,故當(dāng)或時,函數(shù)單調(diào)遞減;當(dāng)時,函數(shù)單調(diào)遞增.故不滿足條件②,從而不是“偏對稱函數(shù)”.
(ⅱ)對于函數(shù),由于,故當(dāng)時,函數(shù)單調(diào)遞減,當(dāng)時,函數(shù)單調(diào)遞增.故滿足條件②.
(ⅲ)對于函數(shù),由復(fù)合函數(shù)的單調(diào)性法則知在區(qū)間(∞,0)上單調(diào)遞減,在(0,+∞)上單調(diào)遞增,故滿足條件②.
(3)由題意可得,且,即,且.
(ⅰ)對于函數(shù),有
.
令,則,由于,故等號不成立,所以在上單調(diào)遞增,故,從而可得.所以滿足條件③,即是“偏對稱函數(shù)”.
(ⅱ)對于函數(shù),有
.令,則,故在上單調(diào)遞增,所以,從而可得.所以滿足條件③,即是“偏對稱函數(shù)”.
綜上可得函數(shù)和是“偏對稱函數(shù)”.選C.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在直三棱柱中,AB=BC,D、E分別為的中點.
(1)證明:ED為異面直線BB1與AC1的公垂線段;
(2)設(shè)AB=1, ,求二面角A1—AD—C1的大小.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在直角梯形ABCD中,AD∥BC,∠BAD=,AB=BC=AD=a,E是AD的中點,O是AC與BE的交點.將△ABE沿BE折起到如圖2中△A1BE的位置,得到四棱錐A1-BCDE.
(Ⅰ)證明:CD⊥平面A1OC;
(Ⅱ)當(dāng)平面A1BE⊥平面BCDE時,四棱錐A1-BCDE的體積為36,求a的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知點為拋物線內(nèi)一定點,過作兩條直線交拋物線于,且分別是線段的中點.
(1)當(dāng)時,求△的面積的最小值;
(2)若且,證明:直線過定點,并求定點坐標(biāo)。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】“既要金山銀山,又要綠水青山”。某風(fēng)景區(qū)在一個直徑為米的半圓形花圓中設(shè)計一條觀光線路。打算在半圓弧上任選一點(與不重合),沿修一條直線段小路,在路的兩側(cè)(注意是兩側(cè))種植綠化帶;再沿弧修一條弧形小路,在小路的一側(cè)(注意是一側(cè))種植綠化帶,小路與綠化帶的寬度忽略不計。
(1)設(shè)(弧度),將綠化帶的總長度表示為的函數(shù);
(2)求綠化帶的總長度的最大值。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在直三棱柱中,,,點為中點,連接交于點,點為中點.
(1)求證:平面;
(2)求證:平面平面;
(3)求點到平面的距離.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的離心率是,且橢圓經(jīng)過點.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)若直線: 與圓相切:
(。┣髨A的標(biāo)準(zhǔn)方程;
(ⅱ)若直線過定點,與橢圓交于不同的兩點,與圓交于不同的兩點,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知(, )展開式的前三項的二項式系數(shù)之和為16,所有項的系數(shù)之和為1.
(1)求和的值;
(2)展開式中是否存在常數(shù)項?若有,求出常數(shù)項;若沒有,請說明理由;
(3)求展開式中二項式系數(shù)最大的項.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在“新零售”模式的背景下,某大型零售公司為推廣線下分店,計劃在S市的A區(qū)開設(shè)分店.為了確定在該區(qū)開設(shè)分店的個數(shù),該公司對該市已開設(shè)分店的其他區(qū)的數(shù)據(jù)作了初步處理后得到下列表格.記x表示在各區(qū)開設(shè)分店的個數(shù),y表示這x個分店的年收入之和.
x(個) | 2 | 3 | 4 | 5 | 6 |
y(百萬元) | 2.5 | 3 | 4 | 4.5 | 6 |
(1)該公司經(jīng)過初步判斷,可用線性回歸模型擬合y與x的關(guān)系,求y關(guān)于x的線性回歸方程;
(2)假設(shè)該公司在A區(qū)獲得的總年利潤z(單位:百萬元)與x,y之間滿足的關(guān)系式為:,請結(jié)合(1)中的線性回歸方程,估算該公司應(yīng)在A區(qū)開設(shè)多少個分店,才能使A區(qū)平均每個分店的年利潤最大?
附:回歸方程中的斜率和截距的最小二乘估計公式分別為:
, .
(參考數(shù)據(jù):,)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com