設(shè)橢圓的焦點(diǎn)分別為,直線交軸于點(diǎn),且.
(1)試求橢圓的方程;
(2)過(guò)分別作互相垂直的兩直線與橢圓分別交于D、E、M、N四點(diǎn)(如圖所示),試求四邊形面積的最大值和最小值.
(1)由題意,
為的中點(diǎn)
即:橢圓方程為…………………(4分)
(2)當(dāng)直線與軸垂直時(shí),,
此時(shí),四邊形的面積.
同理當(dāng)與軸垂直時(shí),也有四邊形的面積.
當(dāng)直線,均與軸不垂直時(shí),設(shè):,代入消去得:
設(shè)
所以,,
所以,,
所以四邊形的面積
令
因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/f3/2/9cosf.gif" style="vertical-align:middle;" />當(dāng),且S是以u(píng)為自變量的增函數(shù),
所以.
綜上可知,.故四邊形面積的最大值為4,最小值為.
解析
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知橢圓的離心率為,并且直線是拋物線的一條切線。
(1)求橢圓的方程
(2)過(guò)點(diǎn)的動(dòng)直線交橢圓于、兩點(diǎn),試問(wèn):在直角坐標(biāo)平面上是否存在一個(gè)定點(diǎn),使得以為直徑的圓恒過(guò)點(diǎn)?若存在求出的坐標(biāo);若不存在,說(shuō)明理由。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知橢圓 ()的一個(gè)焦點(diǎn)坐標(biāo)為,且長(zhǎng)軸長(zhǎng)是短軸長(zhǎng)的倍.
(1)求橢圓的方程;
(2)設(shè)為坐標(biāo)原點(diǎn),橢圓與直線相交于兩個(gè)不同的點(diǎn),線段的中點(diǎn)為,若直線的斜率為,求△的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知拋物線方程為,過(guò)點(diǎn)的直線AB交拋物線于點(diǎn)、,若線段的垂直平分線交軸于點(diǎn),求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本小題滿分12分)
橢圓的離心率,過(guò)右焦點(diǎn)的直線與橢圓相交
于A、B兩點(diǎn),當(dāng)直線的斜率為1時(shí),坐標(biāo)原點(diǎn)到直線的距離為
⑴求橢圓C的方程;
⑵橢圓C上是否存在點(diǎn),使得當(dāng)直線繞點(diǎn)轉(zhuǎn)到某一位置時(shí),有成
立?若存在,求出所有滿足條件的點(diǎn)的坐標(biāo)及對(duì)應(yīng)的直線方程;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知拋物線的準(zhǔn)線為,焦點(diǎn)為,圓的圓心在軸的正半軸上,且與軸相切,過(guò)原點(diǎn)作傾斜角為的直線,交于點(diǎn),交圓于另一點(diǎn),且
(1)求圓和拋物線C的方程;
(2)若為拋物線C上的動(dòng)點(diǎn),求的最小值;
(3)過(guò)上的動(dòng)點(diǎn)Q向圓作切線,切點(diǎn)為S,T,
求證:直線ST恒過(guò)一個(gè)定點(diǎn),并求該定點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(14分)設(shè)橢圓的對(duì)稱中心為坐標(biāo)原點(diǎn),其中一個(gè)頂點(diǎn)為,右焦點(diǎn)與點(diǎn)
的距離為.
(1)求橢圓的方程;
(2)是否存在經(jīng)過(guò)點(diǎn)的直線,使直線與橢圓相交于不同的兩點(diǎn)滿足?若存在,求出直線的方程;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com