若函數(shù)的導(dǎo)函數(shù),則的單調(diào)遞減區(qū)間是      .

試題分析:由,即得的單調(diào)遞減區(qū)間是,所以由的單調(diào)遞減區(qū)間.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

設(shè)函數(shù),若時,有極小值
(1)求實數(shù)的取值;
(2)若數(shù)列中,,求證:數(shù)列的前項和
(3)設(shè)函數(shù),若有極值且極值為,則是否具有確定的大小關(guān)系?證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

某出版社新出版一本高考復(fù)習(xí)用書,該書的成本為5元/本,經(jīng)銷過程中每本書需付給代理商m元(1≤m≤3)的勞務(wù)費,經(jīng)出版社研究決定,新書投放市場后定價為元/本(9≤≤11),預(yù)計一年的銷售量為萬本.
(1)求該出版社一年的利潤(萬元)與每本書的定價的函數(shù)關(guān)系式;
(2)當(dāng)每本書的定價為多少元時,該出版社一年的利潤最大,并求出的最大值

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù)
(1)當(dāng)時,求函數(shù)的單調(diào)區(qū)間;
(2)當(dāng)函數(shù)自變量的取值區(qū)間與對應(yīng)函數(shù)值的取值區(qū)間相同時,這樣的區(qū)間稱為函數(shù)的保值區(qū)間.,試問函數(shù)上是否存在保值區(qū)間?若存在,請求出一個保值區(qū)間;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知,其中為常數(shù).
(Ⅰ)當(dāng)函數(shù)的圖象在點處的切線的斜率為1時,求函數(shù)上的最小值;
(Ⅱ)若函數(shù)上既有極大值又有極小值,求實數(shù)的取值范圍;
(Ⅲ)在(Ⅰ)的條件下,過點作函數(shù)圖象的切線,試問這樣的切線有幾條?并求這些切線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù).
(Ⅰ)當(dāng),時,求的單調(diào)區(qū)間;
(2)當(dāng),且時,求在區(qū)間上的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù),其中為正實數(shù),.
(I)若的一個極值點,求的值;
(II)求的單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

若函數(shù)上單調(diào)遞增,那么實數(shù)的取值范圍是(  )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知函數(shù)滿足,且當(dāng)時,,則(     )
A.B.
C.D.

查看答案和解析>>

同步練習(xí)冊答案