如圖,在長(zhǎng)方體中,,,,是線段的中點(diǎn).
(Ⅰ)求證:平面;
(Ⅱ)求平面把長(zhǎng)方體 分成的兩部分的體積比.
(Ⅰ)詳見解析;(Ⅱ)或.
解析試題分析:1. 第(Ⅰ)問有一點(diǎn)難度,需要作輔助線,這幾乎是用幾何法證明線面平行、線面垂直的必經(jīng)之路了,對(duì)此考生要有意識(shí).2.第(Ⅱ)問的解決比較簡(jiǎn)單,并且不依賴于第(Ⅰ)問,有的考生第(Ⅰ)問沒有做出來,但第(Ⅱ)問做出來了,這是一種好的現(xiàn)象,說明考生能夠把會(huì)做的做對(duì)了.
試題解析:(Ⅰ)證明:設(shè)的中點(diǎn)為,連接,.
根據(jù)題意得, ,且.
∴四邊形是平行四邊形.
∴.
∵平面,平面,
∴平面.
(Ⅱ)解:∵,
,
∴空間幾何體的體積
.
∴或,即平面把長(zhǎng)方體
分成的兩部分的體積比為或.
考點(diǎn):空間線面位置關(guān)系,線面平行,三棱錐體積的求法.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,在四棱錐P-ABCD中,底面ABCD為直角梯形,,,平面底面,為中點(diǎn),M是棱PC上的點(diǎn),.
(1)若點(diǎn)M是棱PC的中點(diǎn),求證:平面;
(2)求證:平面底面;
(3)若二面角M-BQ-C為,設(shè)PM=tMC,試確定t的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
在邊長(zhǎng)為的正方形中,分別為的中點(diǎn),分別為的中點(diǎn),現(xiàn)沿折疊,使三點(diǎn)重合,重合后的點(diǎn)記為,構(gòu)成一個(gè)三棱錐.
(1)請(qǐng)判斷與平面的位置關(guān)系,并給出證明;
(2)證明平面;
(3)求四棱錐的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
四棱錐P-ABCD中,PA⊥平面ABCD,E為AD的中點(diǎn),ABCE為菱形,∠BAD=120°,PA=AB,G、F分別是線段CE、PB的中點(diǎn).
(Ⅰ) 求證:FG∥平面PDC;
(Ⅱ) 求二面角的正切值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,四棱錐中,底面,四邊形中,,,,.
(Ⅰ)求證:平面平面;
(Ⅱ)設(shè).
(ⅰ) 若直線與平面所成的角為,求線段的長(zhǎng);
(ⅱ) 在線段上是否存在一個(gè)點(diǎn),使得點(diǎn)到點(diǎn)的距離都相等?說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖所示,四棱錐,底面是邊長(zhǎng)為的正方形,⊥面,,過點(diǎn)作,連接.
(Ⅰ)求證:;
(Ⅱ)若面交側(cè)棱于點(diǎn),求多面體的體積.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com