如圖,在四棱錐P-ABCD中,底面ABCD為直角梯形,,,平面底面,為中點(diǎn),M是棱PC上的點(diǎn),.
(1)若點(diǎn)M是棱PC的中點(diǎn),求證:平面;
(2)求證:平面底面;
(3)若二面角M-BQ-C為,設(shè)PM=tMC,試確定t的值.
(1)見解析;(2)見解析;(3)3.
解析試題分析:(1)連接AC,交BQ于N,連接MN,在三角形PAC中,利用中位線定理證明PA//MN,由線線平行得線面平行;(2)證PQ⊥AD,QB⊥AD,由PQ∩BQ=Q,所以AD⊥平面PBQ,再利用線面垂直得面面垂直;(3)先證PQ⊥面ABCD,(注意此步不可省略),再以Q為原點(diǎn)建立空間直角坐標(biāo)系,寫出各點(diǎn)坐標(biāo)及平面BQC的法向量,并設(shè),利用關(guān)系PM=tMC,用坐標(biāo)表示出來,列方程解出,并得,
,從而易得平面MBQ法向量為,再由數(shù)量積運(yùn)算得,可得t值.
試題解析:證明:(1)連接AC,交BQ于N,連接MN. 1分
∵BC∥AD且BC=AD,即BCAQ.∴四邊形BCQA為平行四邊形,且N為AC中點(diǎn),
又∵點(diǎn)M是棱PC的中點(diǎn),∴ MN // PA 2分
∵ MN平面MQB,PA平面MQB, 3分
∴ PA // 平面MBQ. 4分
(2)∵AD // BC,BC=AD,Q為AD的中點(diǎn),∴四邊形BCDQ為平行四邊形,∴CD // BQ . 6分
∵∠ADC=90° ∴∠AQB=90° 即QB⊥AD.
又∵平面PAD⊥平面ABCD,且平面PAD∩平面ABCD=AD, 7分
∴BQ⊥平面PAD. 8分
∵BQ平面PQB,∴平面PQB⊥平面PAD. 9分
另證:AD // BC,BC=AD,Q為AD的中點(diǎn)∴ BC // DQ 且BC= DQ,
∴ 四邊形BCDQ為平行四邊形,∴CD // BQ .
∵ ∠ADC=90° ∴∠AQB=90° 即QB⊥AD. 6分
∵ PA=PD, ∴PQ⊥AD. 7分
∵ PQ∩BQ=Q,∴AD⊥平面PBQ. 8分
∵ AD平面PAD,∴平面PQB⊥平面PAD. 9分
(Ⅲ)∵PA=PD,Q為AD的中點(diǎn), ∴PQ⊥AD.
∵平面PAD⊥平面ABCD,且平面PAD∩平面ABCD=AD, ∴PQ⊥平面ABCD. 10分
(不證明PQ⊥平面ABCD直接建系扣1分)
如圖,以Q為原點(diǎn)建立空間直角坐標(biāo)系.
則平面BQC的法向量為;
,,,. 11分
設(shè),
則,,∵,
∴ , ∴ , 12分
在平面MBQ中,,,
∴ 平面MBQ法向量為. 13分
∵二面角M-BQ-C為30°, ,∴ . 14分
考點(diǎn):1、線面平行的判定定理;2、面面垂直的判定定理;3、利用空間直角坐標(biāo)系解決問題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,邊長為2的正方形ABCD,E,F分別是AB,BC的中點(diǎn),將△AED,△DCF分別沿DE,DF折起,使A,C兩點(diǎn)重合于.
(1)求證:⊥EF;
(2)求二面角的平面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,在四棱錐中,底面ABCD是正方形,側(cè)棱底面ABCD,,E是PC的中點(diǎn).
(Ⅰ)證明 平面EDB;
(Ⅱ)求EB與底面ABCD所成的角的正切值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
在三棱拄中,側(cè)面,已知,,.
(Ⅰ)求證:平面;
(Ⅱ)試在棱(不包含端點(diǎn))上確定一點(diǎn)的位置,使得;
(Ⅲ)在(Ⅱ)的條件下,求和平面所成角正弦值的大小.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,在三棱錐A-BCD中,平行于BC的平面MNPQ分別交AB、AC、CD、BD于M、N、P、Q四點(diǎn),且MN=PQ.
(1)求證:四邊形為平行四邊形;
(2)試在直線AC上找一點(diǎn)F,使得.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,在四棱錐中,底面為菱形,其中,,為的中點(diǎn).
(1) 求證:;
(2) 若平面平面,且為的中點(diǎn),求四棱錐的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,直三棱柱ABC-A1B1C1中,D,E分別是AB,BB1的中點(diǎn),AA1=AC=CB=AB.
(Ⅰ)證明:BC1∥平面A1CD;
(Ⅱ)求二面角D-A1C-E的正弦值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com