(本題14分)如圖,一水渠的橫斷面是拋物線形,O是拋物線的頂點,口寬EF=4米,高3米,建立適當?shù)闹苯亲鴺讼,?)求拋物線方程.(2)若將水渠橫斷面改造成等腰梯形ABCD,要求高度不變,只挖土,不填土,求梯形ABCD的下底AB多大時,所挖的土最少?
(1);(2)梯形ABCD的下底AB=米時,所挖的土最少.
解析試題分析:(1)解:如圖 以O為原點,AB所在的直線為X軸,建立平面直角坐標系,
則F(2,3),設拋物線的方程是
因為點F在拋物線上,所以
所以拋物線的方程是
……………………4分
(2) 解:等腰梯形ABCD中,AB∥CD,線段AB的中點O是拋物線的頂點,AD,AB,BC分別與拋物線切于點M,O,N
,設,,則拋物線在N處的切線方程是……………………8分
,所以,……………………10分
梯形ABCD的面積是
…………………12分
答:梯形ABCD的下底AB=米時,所挖的土最少. ……………………14分
考點:本題主要考查拋物線在實際問題中的應用,導數(shù)的幾何意義,均值定理的應用,直線與拋物線的位置關系。
點評:綜合題,通過建立適當?shù)闹苯亲鴺讼,求得拋物線方程,從而通過研究直線與拋物線的位置關系,求切線方程,確定得到截面面積表達式,運用均值定理求得最值。
科目:高中數(shù)學 來源: 題型:解答題
(本小題滿分13分))
京廣高鐵于2012年12月26日全線開通運營,次列車在平直的鐵軌上勻速行駛,由于遇到緊急情況,緊急剎車時列車行駛的路程 (單位:)和時間 (單位:)的關系為:.
(1)求從開始緊急剎車至列車完全停止所經(jīng)過的時間;
(2)求列車正常行駛的速度;
(3)求緊急剎車后列車加速度絕對值的最大值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
(本小題滿分12分)
已知函數(shù).
(I)當時,求函數(shù)的單調(diào)區(qū)間;
(II)若函數(shù)的圖象在點處的切線的傾斜角為45o,問:m在什么范圍取值時,對于任意的,函數(shù)在區(qū)間上總存在極值?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
某汽車生產(chǎn)企業(yè)上年度生產(chǎn)一品牌汽車的投入成本為10萬元/輛,出廠價為13萬元/輛,年銷售量為5000輛.本年度為適應市場需求,計劃提高產(chǎn)品檔次,適當增加投入成本,若每輛車投入成本增加的比例為(0<<1,則出廠價相應提高的比例為0.7,年銷售量也相應增加.已知年利潤=(每輛車的出廠價-每輛車的投入成本)×年銷售量.
(1)若年銷售量增加的比例為0.4,為使本年度的年利潤比上年度有所增加,則投入成本增加的比例應在什么范圍內(nèi)?
(2)年銷售量關于的函數(shù)為,則當為何值時,本年度的年利潤最大?最大利潤為多少?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
(本小題滿分12分)
已知二次函數(shù), 滿足且的最小值是.(Ⅰ)求的解析式;(Ⅱ)設函數(shù),若函數(shù)在區(qū)間上是單調(diào)函數(shù),求實數(shù)的取值范圍。
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
(本題滿分12分)設函數(shù)f(x)=x3-ax2+3x+5(a>0).
(1)已知f(x)在R上是單調(diào)函數(shù),求a的取值范圍;
(2)若a=2,且當x∈[1,2]時,f(x)≤m恒成立,求實數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
(本小題滿分14分)已知集合是滿足下列性質(zhì)的函數(shù)的全體:在定義域內(nèi)存在,使得成立。
(Ⅰ)函數(shù)是否屬于集合?說明理由;
(Ⅱ)設函數(shù),求的取值范圍;
(Ⅲ)設函數(shù)圖象與函數(shù)的圖象有交點,
證明:函數(shù)。
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com