(本小題滿(mǎn)分12分)
已知函數(shù).
(I)當(dāng)時(shí),求函數(shù)的單調(diào)區(qū)間;
(II)若函數(shù)的圖象在點(diǎn)處的切線的傾斜角為45o,問(wèn):m在什么范圍取值時(shí),對(duì)于任意的,函數(shù)在區(qū)間上總存在極值?
(1)在(0,1)上單調(diào)遞增,在(1,+∞)上單調(diào)遞減.
(2)。
解析試題分析:
(I)當(dāng)時(shí),,
令時(shí),解得,所以在(0,1)上單調(diào)遞增;
令時(shí),解得,所以在(1,+∞)上單調(diào)遞減.
(II)因?yàn)楹瘮?shù)的圖象在點(diǎn)(2,)處的切線的傾斜角為45o,
所以.
所以,.
,
,
因?yàn)槿我獾?img src="http://thumb.zyjl.cn/pic5/tikupic/1c/0/ncbpb1.png" style="vertical-align:middle;" />,函數(shù)在區(qū)間上總存在極值,
所以只需
解得.
考點(diǎn):利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性和極值;導(dǎo)數(shù)的幾何意義。
點(diǎn)評(píng):(1)本題注意考查導(dǎo)數(shù)知識(shí)的運(yùn)用,利用導(dǎo)數(shù)來(lái)研究函數(shù)的單調(diào)性很熱極值,同時(shí)也考查了學(xué)生分析問(wèn)題、解決問(wèn)題的能力,屬于中檔題.(2)利用導(dǎo)數(shù)求函數(shù)的單調(diào)區(qū)間,一定要先求函數(shù)的定義域。(3)要滿(mǎn)足函數(shù)y=f(x)在內(nèi)有極值點(diǎn)。只需滿(mǎn)足內(nèi)有變號(hào)零點(diǎn)。
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本小題滿(mǎn)分12分)
圖1是某種稱(chēng)為“凹槽”的機(jī)械部件的示意圖,圖2是凹槽的橫截面(陰影部分)示意圖,其中四邊形ABCD是矩形,弧CmD是半圓,凹槽的橫截面的周長(zhǎng)為4.已知凹槽的強(qiáng)度與橫截面的面積成正比,比例系數(shù)為,設(shè)AB=2x,BC=y.
(1)寫(xiě)出y關(guān)于x函數(shù)表達(dá)式,并指出x的取值范圍;
(2)求當(dāng)x取何值時(shí),凹槽的強(qiáng)度最大.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(1)(5分)若函數(shù),則_______________.
(2)(5分)化簡(jiǎn):=____________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
利民商店經(jīng)銷(xiāo)某種洗衣粉,年銷(xiāo)售量為6000包,每包進(jìn)價(jià)2.80元,銷(xiāo)售價(jià)3.40元,全年分若干次進(jìn)貨,每次進(jìn)貨x包,已知每次進(jìn)貨運(yùn)輸勞務(wù)費(fèi)62.50元,全年保管費(fèi)為1.5x元。
(1)把該商店經(jīng)銷(xiāo)洗衣粉一年的利潤(rùn)y(元)表示為每次進(jìn)貨量x(包)的函數(shù),并指出函數(shù)的定義域;
(2)為了使利潤(rùn)最大,每次應(yīng)該進(jìn)貨多少包?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本小題滿(mǎn)分13分)時(shí)下,網(wǎng)校教學(xué)越來(lái)越受到廣大學(xué)生的喜愛(ài),它已經(jīng)成為學(xué)生們課外學(xué)習(xí)的一種趨勢(shì),假設(shè)某網(wǎng)校的套題每日的銷(xiāo)售量(單位:千套)與銷(xiāo)售價(jià)格(單位:元/套)滿(mǎn)足的關(guān)系式,其中,為常數(shù).已知銷(xiāo)售價(jià)格為4元/套時(shí),每日可售出套題21千套.
(1)求的值;
(2)假設(shè)網(wǎng)校的員工工資,辦公等所有開(kāi)銷(xiāo)折合為每套題2元(只考慮銷(xiāo)售出的套數(shù)),試確定銷(xiāo)售價(jià)格的值,使網(wǎng)校每日銷(xiāo)售套題所獲得的利潤(rùn)最大.(保留1位小數(shù))
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本題滿(mǎn)分12分) 商場(chǎng)銷(xiāo)售某一品牌的羊毛衫,購(gòu)買(mǎi)人數(shù)是羊毛衫標(biāo)價(jià)的一次函數(shù),標(biāo)價(jià)越高,購(gòu)買(mǎi)人數(shù)越少。把購(gòu)買(mǎi)人數(shù)為零時(shí)的最低標(biāo)價(jià)稱(chēng)為無(wú)效價(jià)格,已知無(wú)效價(jià)格為每件300元。現(xiàn)在這種羊毛衫的成本價(jià)是100元/ 件,商場(chǎng)以高于成本價(jià)的相同價(jià)格(標(biāo)價(jià))出售. 問(wèn):
(Ⅰ)商場(chǎng)要獲取最大利潤(rùn),羊毛衫的標(biāo)價(jià)應(yīng)定為每件多少元?
(Ⅱ)通常情況下,獲取最大利潤(rùn)只是一種“理想結(jié)果”,如果商場(chǎng)要獲得最大利潤(rùn)的75%,那么羊毛衫的標(biāo)價(jià)為每件多少元?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本題14分)如圖,一水渠的橫斷面是拋物線形,O是拋物線的頂點(diǎn),口寬EF=4米,高3米,建立適當(dāng)?shù)闹苯亲鴺?biāo)系,(1)求拋物線方程.(2)若將水渠橫斷面改造成等腰梯形ABCD,要求高度不變,只挖土,不填土,求梯形ABCD的下底AB多大時(shí),所挖的土最少?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本小題滿(mǎn)分10分)選修4-5:不等式選講
已知函數(shù).
(1)當(dāng)時(shí),求函數(shù)的定義域;
(2)若關(guān)于的不等式的解集是,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本小題滿(mǎn)分14分)
某市郊區(qū)一村民小組有100戶(hù)農(nóng)民,且都從事蔬菜種植.據(jù)調(diào)查,平均每戶(hù)的年收入為3萬(wàn)元.為了調(diào)整產(chǎn)業(yè)結(jié)構(gòu),郊區(qū)政府決定動(dòng)員該村部分農(nóng)民從事蔬菜加工.據(jù)預(yù)測(cè),若能動(dòng)員戶(hù)農(nóng)民從事蔬菜加工,則剩下的繼續(xù)從事蔬菜種植的農(nóng)民平均每戶(hù)的年收入有望提高%,而從事蔬菜加工的農(nóng)民平均每戶(hù)的年收入將為萬(wàn)元.
(1)在動(dòng)員戶(hù)農(nóng)民從事蔬菜加工后,要使從事蔬菜種植的農(nóng)民的總年收入不低于動(dòng)員前從事蔬菜種植的農(nóng)民的總年收入,求的取值范圍;
(2)在(1)的條件下,要使這100戶(hù)農(nóng)民中從事蔬菜加工的農(nóng)民的總年收入始終不高于從事蔬菜種植的農(nóng)民的總年收入,求的最大值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com