【題目】是雙曲線上一點(diǎn), 分別是雙曲線的左、右頂點(diǎn),直線的斜率之積為.

(1)求雙曲線的離心率;

(2)過雙曲線的右焦點(diǎn)且斜率為的直線交雙曲線于兩點(diǎn), 為坐標(biāo)原點(diǎn), 為雙曲線上一點(diǎn),滿足,求的值.

【答案】(1);(2).

【解析】試題分析:(1)點(diǎn)P(x0,y0)(x0≠±a)在雙曲線1上,有1, 1

由題意又有·, 2

可得a25b2,c2a2b26b2,則e. 4

(2)聯(lián)立,得4x210cx35b20,設(shè)A(x1,y1),B(x2,y2)

6

設(shè), ,即

C為雙曲線上一點(diǎn),即55b2,有(λx1x2)25(λy1y2)25b2。7

化簡(jiǎn)得:λ2(5)(5)2λ(x1x25y1y2)5b2 。9

A(x1y1),B(x2,y2)在雙曲線上,所以55b2, 55b2

式又有x1x25y1y2x1x25(x1c)(x2c)=-4x1x25c(x1x2)5c210b2

λ20,解出λ0λ=-4. 12

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】街道旁邊有一游戲:在鋪滿邊長(zhǎng)為9 cm的正方形塑料板的寬廣地面上,擲一枚半徑為1 cm的小圓板,規(guī)則如下:每擲一次交5角錢,若小圓板壓在正方形的邊上,可重?cái)S一次;若擲在正方形內(nèi),須再交5角錢可玩一次;若擲在或壓在塑料板的頂點(diǎn)上,可獲得一元錢,試問:

(1)小圓板壓在塑料板的邊上的概率是多少?

(2)小圓板壓在塑料板頂點(diǎn)上的概率是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓 )的左焦點(diǎn)為,離心率為

(Ⅰ)求橢圓的標(biāo)準(zhǔn)方程;

(Ⅱ)設(shè)為坐標(biāo)原點(diǎn), 為直線上一點(diǎn),過的垂線交橢圓于, .當(dāng)四邊形是平行四邊形時(shí),求四邊形的面積。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABC是圓的內(nèi)接三角形,∠BAC的平分線交圓于點(diǎn)D,交BC于E,過點(diǎn)B的圓的切線與AD的延長(zhǎng)線交于點(diǎn)F,在上述條件下,給出下列四個(gè)結(jié)論:
①BD平分∠CBF;
②FB2=FDFA;
③AECE=BEDE;
④AFBD=ABBF.

所有正確結(jié)論的序號(hào)是(
A.①②
B.③④
C.①②③
D.①②④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知某校甲、乙、丙三個(gè)年級(jí)的學(xué)生志愿者人數(shù)分別為240,160,160.現(xiàn)采用分層抽樣的方法從中抽取7名同學(xué)去某敬老院參加獻(xiàn)愛心活動(dòng).

(Ⅰ)應(yīng)從甲、、丙三個(gè)年級(jí)的學(xué)生志愿者中分別抽取多少人?

設(shè)抽出的7名同學(xué)分別用A,B,C,D,E,F,G表示,現(xiàn)從中隨機(jī)抽取2名同學(xué)承擔(dān)敬老院的衛(wèi)生工作.

(i)試用所給字母列舉出所有可能的抽取結(jié)果;

(ii)設(shè)M為事件“抽取的2名同學(xué)來自同一年級(jí)”,求事件M發(fā)生的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】[選修4-1:幾何證明選講]
如圖,在正方形ABCD中,E,G分別在邊DA,DC上(不與端點(diǎn)重合),且DE=DG,過D點(diǎn)作DF⊥CE,垂足為F.

(1)證明:B,C,G,F(xiàn)四點(diǎn)共圓;
(2)若AB=1,E為DA的中點(diǎn),求四邊形BCGF的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某大學(xué)生在開學(xué)季準(zhǔn)備銷售一種文具套盒進(jìn)行試創(chuàng)業(yè),在一個(gè)開學(xué)季內(nèi),每售出盒該產(chǎn)品獲利潤(rùn)元;未售出的產(chǎn)品,每盒虧損.根據(jù)歷史資料,得到開學(xué)季市場(chǎng)需求量的頻率分布直方圖,如圖所示。該同學(xué)為這個(gè)開學(xué)季購(gòu)進(jìn)了盒該產(chǎn)品,以(單位:盒,)表示這個(gè)開學(xué)季內(nèi)的市場(chǎng)需求量,(單位:元)表示這個(gè)開學(xué)季內(nèi)經(jīng)銷該產(chǎn)品的利潤(rùn)。

(1)求市場(chǎng)需求量在[100,120]的概率;

(2)根據(jù)直方圖估計(jì)這個(gè)開學(xué)季內(nèi)市場(chǎng)需求量的中位數(shù);

(3)將表示為的函數(shù),并根據(jù)直方圖估計(jì)利潤(rùn)不少于元的概率。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),)的部分圖象如圖所示,下列說法正確的是( )

A. 的圖象關(guān)于直線對(duì)稱

B. 的圖象關(guān)于點(diǎn)對(duì)稱

C. 將函數(shù)的圖象向左平移個(gè)單位得到函數(shù)的圖象

D. 若方程上有兩個(gè)不相等的實(shí)數(shù)根,則實(shí)數(shù)的取值范圍是

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】對(duì)于函數(shù)fx)=(|x﹣2|+1)4,給出如下三個(gè)命題:①fx+2)是偶函數(shù);②fx)在區(qū)間(﹣∞,2)上是減函數(shù),在區(qū)間(2,+∞)上是增函數(shù);③fx)沒有最小值.其中正確的個(gè)數(shù)為( 。

A. 1 B. 2 C. 3 D. 0

查看答案和解析>>

同步練習(xí)冊(cè)答案