【題目】田忌賽馬是《史記》中記載的一個故事,說的是齊國大將軍田忌經(jīng)常與齊國眾公子賽馬,孫臏發(fā)現(xiàn)田忌的馬和其他人的馬相差并不遠,都分為上、中、下三等.于是孫臏給田忌將軍獻策:比賽即將開始時,他讓田忌用下等馬對戰(zhàn)公子們的上等馬,用上等馬對戰(zhàn)公子們的中等馬,用中等馬對戰(zhàn)公子們的下等馬,從而使田忌贏得了許多賭注.假設(shè)田忌的各等級馬與某公子的各等級馬進行一場比賽,田忌獲勝的概率如下表所示:
比賽規(guī)則規(guī)定:一次比賽由三場賽馬組成,每場由公子和田忌各出一匹馬參賽,結(jié)果只有勝和負兩種,并且毎一方三場賽馬的馬的等級各不相同,三場比賽中至少獲勝兩場的一方為最終勝利者.
(1)如果按孫臏的策略比賽一次,求田忌獲勝的概率;
(2)如果比賽約定,只能同等級馬對戰(zhàn),每次比賽賭注1000金,即勝利者贏得對方1000金,每月比賽一次,求田忌一年賽馬獲利的數(shù)學期望.
【答案】(1)0.72;(2)金.
【解析】
(1)田忌用下等馬對戰(zhàn)公子們的上等馬獲勝的概率為,用上等馬對戰(zhàn)公子們的中等馬獲勝的概率為,用中等馬對戰(zhàn)公子們的下等馬獲勝的概率為.由題意求解即可.
(2)根據(jù)比賽約定,只能同等級馬對戰(zhàn),在某月的比賽中田忌獲勝,則三場比賽中,田忌輸贏的分布為:勝勝勝,負勝勝,勝負勝,勝勝負,求出該月的比賽中田忌獲勝的概率以及該月賽馬獲利得期望,再求解一年的獲利期望,即可.
(1)記事件:按孫臏的策略比賽一次,田忌獲勝,
對于事件,三場比賽中,由于有一場比賽田忌必輸,另兩場都勝,
故.
(2)設(shè)田忌在每次比賽中所得的獎金為隨機變量(金),則的取值為和,
若在某月的比賽中田忌獲勝,則三場比賽中,田忌輸贏的分布為:勝勝勝,負勝勝,勝負勝,勝勝負.
設(shè)在該月的比賽中田忌獲勝的概率為,則
,
,
因此田忌一年賽馬獲利的數(shù)學期望為(金).
科目:高中數(shù)學 來源: 題型:
【題目】設(shè)橢圓的一個頂點與拋物線的焦點重合,,分別是橢圓的左、右焦點,離心率,過橢圓右焦點的直線與橢圓交于,兩點.
(Ⅰ)求橢圓的方程;
(Ⅱ)是否存在直線,使得,若存在,求出直線的方程;若不存在,說明理由;
(Ⅲ)設(shè)點是一個動點,若直線的斜率存在,且為中點,,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】沙漏是古代的一種計時裝置,它由兩個形狀完全相同的容器和一個狹窄的連接管道組成,開始時細沙全部在上部容器中,細沙通過連接管道全部流到下部容器所需要的時間稱為該沙漏的一個沙時.如圖,某沙漏由上下兩個圓錐組成,圓錐的底面直徑和高均為8cm,細沙全部在上部時,其高度為圓錐高度的(細管長度忽略不計).假設(shè)該沙漏每秒鐘漏下的沙,且細沙全部漏入下部后,恰好堆成一個蓋住沙漏底部的圓錐形沙堆.以下結(jié)論正確的是( )
A.沙漏中的細沙體積為
B.沙漏的體積是
C.細沙全部漏入下部后此錐形沙堆的高度約為2.4cm
D.該沙漏的一個沙時大約是1985秒()
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知拋物線的焦點為,直線,過點且與拋物線分別交于點和點,弦和的中點分別為,若,則下列結(jié)論正確的是
(______________)
①的最小值為32
②以四點為頂點的四邊形的面積的最小值為128
③直線過定點
④焦點可以同時為弦和的三等分點
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知曲線的參數(shù)方程為(為參數(shù)),在同一平面直角坐標系中,將曲線上的點按坐標變換得到曲線,以原點為極點,軸的正半軸為極軸,建立極坐標系.設(shè)點的極坐標為.
(1)求曲線的極坐標方程;
(2)若過點且傾斜角為的直線與曲線交于兩點,求的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=2|x+1|+|x-2|.
(1)求f(x)的最小值m;
(2)若a,b,c均為正實數(shù),且滿足a+b+c=m,求證:++≥3.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知由n(n∈N*)個正整數(shù)構(gòu)成的集合A={a1,a2,…,an}(a1<a2<…<an,n≥3),記SA=a1+a2+…+an,對于任意不大于SA的正整數(shù)m,均存在集合A的一個子集,使得該子集的所有元素之和等于m.
(1)求a1,a2的值;
(2)求證:“a1,a2,…,an成等差數(shù)列”的充要條件是“”;
(3)若SA=2020,求n的最小值,并指出n取最小值時an的最大值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】若函數(shù)f(x)=﹣x﹣cos2x+m(sinx﹣cosx)在(﹣∞,+∞)上單調(diào)遞減,則m的取值范圍是____________.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設(shè)離心率為 的橢圓 的左、右焦點為 , 點P是E上一點, , 內(nèi)切圓的半徑為 .
(1)求E的方程;
(2)矩形ABCD的兩頂點C、D在直線上,A、B在橢圓E上,若矩形ABCD的周長為 , 求直線AB的方程.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com