【題目】已知頂點在單位圓上的△ABC中,角A、B、C所對的邊分別為a、b、c,且b2+c2=a2+bc.
(1)求角A的大。
(2)若b2+c2=4,求△ABC的面積.
科目:高中數學 來源: 題型:
【題目】如圖所示,E是正方形ABCD所在平面外一點,E在面ABCD上的正投影F恰在AC上,FG∥BC,AB=AE=2,∠EAB=60°,有以下四個命題:
(1)CD⊥面GEF;
(2)AG=1;
(3)以AC,AE作為鄰邊的平行四邊形面積是8;
(4)∠EAD=60°.
其中正確命題的個數為( )
A.1
B.2
C.3
D.4
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數 , ,其中a>0,且a≠1.
(1)若0<a<1,求滿足不等式f(x)<1的x的取值的集合;
(2)求關于x的不等式f(x)≥g(x)的解的集合.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知集合A={x|y= },B={y|y=x ,x∈R},C={x|mx<﹣1},
(1)求R(A∩B);
(2)是否存在實數m使得(A∩B)C成立,若存在,求出m的取值范圍;若不存在,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)=2x , |(x≥0),圖象如圖所示.函數g(x)=﹣x2﹣2x+a,(x<0),其圖象經過點A(﹣1,2).
(1)求實數a的值,并在所給直角坐標系xOy內做出函數g(x)的圖象;
(2)設h(x)= ,根據h(x)的圖象寫出其單調區(qū)間.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知0<a<1,函數f(x)=loga(ax﹣1)
(I)求函數f(x)的定義域;
(Ⅱ)判斷f(x)的單調性;
(Ⅲ)若m滿足f(1﹣m)≥f(1﹣m2),求m的范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知F1、F2為雙曲線 ﹣ =1(a>0,b>0)的左、右焦點,過F2作雙曲線漸近線的垂線,垂足為P,若|PF1|2﹣|PF2|2=c2 . 則雙曲線離心率的值為
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com