【題目】已知函數(shù).
(1)討論函數(shù)在定義域內(nèi)的極值點(diǎn)的個(gè)數(shù);
(2)若函數(shù)在處取得極值,且對(duì)恒成立,求實(shí)數(shù)的取值范圍;
(3)當(dāng)且時(shí),試比較與的大。
【答案】(1)當(dāng)時(shí), 在上沒有極值點(diǎn),當(dāng)時(shí), 在上有一個(gè)極值點(diǎn);(2);(3)證明見解析.
【解析】試題分析: (1),當(dāng)時(shí), 在上恒成立,函數(shù)在單調(diào)遞減 在上沒有極值點(diǎn);當(dāng)時(shí), 得得 在處有極小值當(dāng)時(shí), 在上沒有極值點(diǎn),當(dāng)時(shí), 在上有一個(gè)極值點(diǎn);(2)由函數(shù)在處取得極值 ,
令 在上遞減,在上遞增
;(3)令,由(2)可知在上單調(diào)遞減,則在上單調(diào)遞減當(dāng)時(shí), ,當(dāng)時(shí), .
試題解析:(1),x>0
當(dāng)時(shí), 在上恒成立,函數(shù)在單調(diào)遞減,
∴在上沒有極值點(diǎn);
當(dāng)時(shí), 得得,
∴在上遞減,在上遞增,即在處有極小值.
∴當(dāng)時(shí), 在上沒有極值點(diǎn),
當(dāng)時(shí), 在上有一個(gè)極值點(diǎn).
(2)∵函數(shù)在處取得極值,∴,∴,
令,可得在上遞減,在上遞增,
∴,即.
(3)令,
由(2)可知在上單調(diào)遞減,則在上單調(diào)遞減,
∴當(dāng)時(shí), ,即;
當(dāng)時(shí), ,∴,當(dāng)時(shí), ,
∴.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)(其中).
(Ⅰ) 當(dāng)時(shí),若在其定義域內(nèi)為單調(diào)函數(shù),求的取值范圍;
(Ⅱ) 當(dāng)時(shí),是否存在實(shí)數(shù),使得當(dāng)時(shí),不等式恒成立,如果存在,求的取值范圍,如果不存在,說明理由(其中是自然對(duì)數(shù)的底數(shù),=2.71828…).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),其中,.是自然對(duì)數(shù)的底數(shù).
(1)求曲線在處的切線方程為,求實(shí)數(shù),的值;
(2)①若時(shí),函數(shù)既有極大值又有極小值,求實(shí)數(shù)的取值范圍;
②若,,若對(duì)一切正實(shí)數(shù)恒成立,求實(shí)數(shù)的取值范圍(用表示).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知為等差數(shù)列,且,.
(1)求的通項(xiàng)公式;
(2)若等比數(shù)列滿足,,求的前項(xiàng)和公式.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知的左、右焦點(diǎn)分別為,,點(diǎn)在橢圓上,,且的面積為4.
(1)求橢圓的方程;
(2)點(diǎn)是橢圓上任意一點(diǎn),分別是橢圓的左、右頂點(diǎn),直線與直線分別交于兩點(diǎn),試證:以為直徑的圓交軸于定點(diǎn),并求該定點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù).
(1)求的單調(diào)區(qū)間和極值;
(2)證明:若存在零點(diǎn),則在區(qū)間上僅有一個(gè)零點(diǎn).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】先后2次拋擲一枚骰子,將得到的點(diǎn)數(shù)分別記為.
(Ⅰ)求滿足的概率;
(Ⅱ)設(shè)三條線段的長分別為和5,求這三條線段能圍成等腰三角形(含等邊三角形)的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù), 表示導(dǎo)函數(shù).
(1)當(dāng)時(shí),求函數(shù)在點(diǎn)處的切線方程;
(2)討論函數(shù)的單調(diào)區(qū)間;
(3)對(duì)于曲線上的不同兩點(diǎn),求證:存在唯一的,使直線的斜率等于.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com