如圖,設橢圓:的離心率,頂點的距離為,為坐標原點.
(1)求橢圓的方程;
(2)過點作兩條互相垂直的射線,與橢圓分別交于兩點.
(。┰嚺袛帱c到直線的距離是否為定值.若是請求出這個定值,若不是請說明理由;
(ⅱ)求的最小值.
(1);(2)(。;(ⅱ).
解析試題分析:(1)利用離心率可得,關系.由兩個頂點距離可得,距離,由此結合可求得,的值,從而求得橢圓的標準方程;(2)分直線的斜率不存在與存在兩種情況求解.當直線的斜率不存在時,情況特殊,易求解;當直線的斜率存在時,設直線的方程為與橢圓方程聯(lián)立消去得到關于的一元二次方程,然后結合韋達定理與,以及點到直線的距離公式求解;(3)在中,利用=與,結合基本不等式求解.
試題解析:(1)由,得,
由頂點的距離為,得,
又由,解得,所以橢圓C的方程為.
(2)解:(。c到直線的距離為定值.
設,
① 當直線AB的斜率不存在時,則為等腰直角三角形,不妨設直線:,
將代入,解得,
所以點到直線的距離為;
② 當直線的斜率存在時,設直線的方程為與橢圓:,
聯(lián)立消去得,
,.
因為,所以,,
即,
所以,整理得,
所以點到直線的距離=.
綜上可知點到直線的距離為定值.
(ⅱ)在中,因為=
又因為≤
科目:高中數(shù)學 來源: 題型:解答題
已知中心在原點的雙曲線C的一個焦點是F1(-3,0),一條漸近線的方程是
(1)求雙曲線C的方程;
(2)若以k(k≠0)為斜率的直線l與雙曲線C相交于兩個不同的點M, N,且線段MA的垂直平分線與兩坐標軸圍成的三角形的面積為,求k的取值范圍。
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知圓,直線與圓相切,且交橢圓于兩點,c是橢圓的半焦距,.
(1)求m的值;
(2)O為坐標原點,若,求橢圓的方程;
(3)在(2)的條件下,設橢圓的左右頂點分別為A,B,動點,直線與直線分別交于M,N兩點,求線段MN的長度的最小值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
如圖,點P(0,-1)是橢圓C1:=1(a>b>0)的一個頂點,C1的長軸是圓C2:x2+y2=4的直徑.l1,l2是過點P且互相垂直的兩條直線,其中l1交圓C2于A,B兩點,l2交橢圓C1于另一點D.
(1)求橢圓C1的方程;
(2)求△ABD面積取最大值時直線l1的方程.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知橢圓的中心為坐標原點,短軸長為2,一條準線方程為l:x=2.
(1)求橢圓的標準方程;
(2)設O為坐標原點,F是橢圓的右焦點,點M是直線l上的動點,過點F作OM的垂線與以OM為直徑的圓交于點N,求證:線段ON的長為定值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知直線l:y=x+,圓O:x2+y2=5,橢圓E:=1(a>b>0)的離心率e=,直線l被圓O截得的弦長與橢圓的短軸長相等.
(1)求橢圓E的方程;
(2)過圓O上任意一點P作橢圓E的兩條切線,若切線都存在斜率,求證:兩條切線的斜率之積為定值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
設直線l:x-y+m=0與拋物線C:y2=4x交于不同兩點A,B,F為拋物線的焦點.
(1)求△ABF的重心G的軌跡方程;
(2)如果m=-2,求△ABF的外接圓的方程.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知動點P到點A(-2,0)與點B(2,0)的斜率之積為-,點P的軌跡為曲線C.
(1)求曲線C的方程;
(2)若點Q為曲線C上的一點,直線AQ,BQ與直線x=4分別交于M,N兩點,直線BM與橢圓的交點為D.求證,A,D,N三點共線.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com