如圖,點(diǎn)P(0,-1)是橢圓C1=1(a>b>0)的一個(gè)頂點(diǎn),C1的長軸是圓C2x2y2=4的直徑.l1,l2是過點(diǎn)P且互相垂直的兩條直線,其中l1交圓C2A,B兩點(diǎn),l2交橢圓C1于另一點(diǎn)D.

(1)求橢圓C1的方程;
(2)求△ABD面積取最大值時(shí)直線l1的方程.

(1)y2=1(2)y=±x-1.

解析

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

橢圓的離心率為,且經(jīng)過點(diǎn)過坐標(biāo)原點(diǎn)的直線均不在坐標(biāo)軸上,與橢圓M交于A、C兩點(diǎn),直線與橢圓M交于B、D兩點(diǎn)
(1)求橢圓M的方程;
(2)若平行四邊形ABCD為菱形,求菱形ABCD的面積的最小值

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,F(xiàn)是橢圓的右焦點(diǎn),以點(diǎn)F為圓心的圓過原點(diǎn)O和橢圓的右頂點(diǎn),設(shè)P是橢圓上的動(dòng)點(diǎn),P到橢圓兩焦點(diǎn)的距離之和等于4.

(1)求橢圓和圓的標(biāo)準(zhǔn)方程;
(2)設(shè)直線l的方程為x=4,PM⊥l,垂足為M,是否存在點(diǎn)P,使得△FPM為等腰三角形?若存在,求出點(diǎn)P的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知橢圓C的焦點(diǎn)分別為,長軸長為6,設(shè)直線交橢圓C于A、B兩點(diǎn),求線段AB的中點(diǎn)坐標(biāo)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知圓,直線與圓相切,且交橢圓兩點(diǎn),c是橢圓的半焦距, 
(1)求m的值;
(2)O為坐標(biāo)原點(diǎn),若,求橢圓的方程;
(3)在(2)的條件下,設(shè)橢圓的左右頂點(diǎn)分別為A,B,動(dòng)點(diǎn),直線與直線分別交于M,N兩點(diǎn),求線段MN的長度的最小值 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,設(shè)橢圓的離心率,頂點(diǎn)的距離為,為坐標(biāo)原點(diǎn).

(1)求橢圓的方程;
(2)過點(diǎn)作兩條互相垂直的射線,與橢圓分別交于兩點(diǎn).
(。┰嚺袛帱c(diǎn)到直線的距離是否為定值.若是請求出這個(gè)定值,若不是請說明理由;
(ⅱ)求的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,橢圓=1(ab>0)的上,下兩個(gè)頂點(diǎn)為AB,直線ly=-2,點(diǎn)P是橢圓上異于點(diǎn)A,B的任意一點(diǎn),連接AP并延長交直線l于點(diǎn)N,連接PB并延長交直線l于點(diǎn)M,設(shè)AP所在的直線的斜率為k1,BP所在的直線的斜率為k2.若橢圓的離心率為,且過點(diǎn)A(0,1).

(1)求k1·k2的值;
(2)求MN的最小值;
(3)隨著點(diǎn)P的變化,以MN為直徑的圓是否恒過定點(diǎn)?若過定點(diǎn),求出該定點(diǎn);如不過定點(diǎn),請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知橢圓C的中心為平面直角坐標(biāo)系xOy的原點(diǎn),焦點(diǎn)在x軸上,它的一個(gè)頂點(diǎn)到兩個(gè)焦點(diǎn)的距離分別是7和1.
(1)求橢圓C的方程;
(2)若P為橢圓C上的動(dòng)點(diǎn),M為過P且垂直于x軸的直線上的一點(diǎn),λ,求點(diǎn)M的軌跡方程,并說明軌跡是什么曲線.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知平面五邊形關(guān)于直線對稱(如圖(1)),,,將此圖形沿折疊成直二面角,連接、得到幾何體(如圖(2))

(1)證明:平面;
(2)求平面與平面的所成角的正切值.

查看答案和解析>>

同步練習(xí)冊答案