【題目】已知橢圓 的離心率為,且過點.

(Ⅰ)求橢圓的方程;

(Ⅱ)過點任作一條直線與橢圓相交于,兩點,試問在軸上是否存在定點,使得直線與直線關(guān)于軸對稱?若存在,求出點的坐標;若不存在,說明理由.

【答案】(Ⅰ);(Ⅱ).

【解析】試卷分析:(Ⅰ)根據(jù)離心率為,短軸右端點為A的坐標即可求出a,b的值,進而求出橢圓的方程;(Ⅱ)分類討論:當直線軸不垂直時,當軸時,由橢圓的對稱性可知恒有直線與直線關(guān)于軸對稱,即在軸上存在定點,使得直線與直線關(guān)于軸對稱.

試卷解析:

(Ⅰ)由題意得,

,故橢圓的方程為.

(Ⅱ)假設(shè)存在點滿足題設(shè)條件.

當直線軸不垂直時,設(shè)的方程為,

代入橢圓方程化簡得: ,

設(shè),,則,,

所以

因為 ,

所以當時,,直線與直線關(guān)于軸對稱,

軸時,由橢圓的對稱性可知恒有直線與直線關(guān)于軸對稱,

綜上可得,在軸上存在定點,使得直線與直線關(guān)于軸對稱.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù).

(I)當a=2時,求曲線在點處的切線方程;

(II)設(shè)函數(shù),z.x.x.k討論的單調(diào)性并判斷有無極值,有極值時求出極值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某企業(yè)生產(chǎn)甲、乙兩種產(chǎn)品,已知生產(chǎn)每噸甲產(chǎn)品要用A原料3噸,B原料2噸,生產(chǎn)每噸乙產(chǎn)品要用A原料1噸,B原料3噸。銷售每噸甲產(chǎn)品可獲得利潤5萬元,每噸乙產(chǎn)品可獲得利潤3萬元,該企業(yè)在一個生產(chǎn)周期內(nèi)消耗A原料不超過13噸,B原料不超過18噸,那么該企業(yè)可獲得最大利潤是___________萬元

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】函數(shù)f(x)=(x2﹣3)ex , 當m在R上變化時,設(shè)關(guān)于x的方程f2(x)﹣mf(x)﹣ =0的不同實數(shù)解的個數(shù)為n,則n的所有可能的值為(
A.3
B.1或3
C.3或5
D.1或3或5

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知點關(guān)于原點對稱,恰為拋物線 的焦點,點在拋物線上,且線段的中點恰在軸上,的面積為8.若拋物線上存在點使得,則實數(shù)的最大值為( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】橢圓的中心在原點,焦點分別在軸與軸上,它們有相同的離心率,并且的短軸為的長軸,的四個焦點構(gòu)成的四邊形面積是.

(1)求橢圓的方程;

(2)設(shè)是橢圓上非頂點的動點,與橢圓長軸兩個頂點的連線,分別與橢圓交于點.

(i)求證:直線,斜率之積為常數(shù);

(ii)直線與直線的斜率之積是否為常數(shù)?若是,求出該值;若不是,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】函數(shù)f(x)=kax(k,a為常數(shù),a>0且a≠1)的圖象過點A(0,1),B(3,8).
(1)求函數(shù)f(x)的解析式;
(2)若函數(shù)g(x)= 是奇函數(shù),求b的值;
(3)在(2)的條件下判斷函數(shù)g(x)的單調(diào)性,并用定義證明你的結(jié)論;
(4)解不等式g(3x)+g(x﹣3﹣x2)<0.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓 和點P(4,2),直線l經(jīng)過點P且與橢圓交于A,B兩點.
(1)當直線l的斜率為 時,求線段AB的長度;
(2)當P點恰好為線段AB的中點時,求l的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在如圖所示的幾何體中,四邊形是矩形, 平面, 的中點.

(1)求證: 平面

(2)若, ,求證平面平面.

查看答案和解析>>

同步練習冊答案