【題目】已知(x+1)n=a0+a1(x﹣1)+a2(x﹣1)2+a3(x﹣1)3+…+an(x﹣1)n , (其中n∈N*)
(1)求a0及Sn=a1+2a2+3a3+…+nan;
(2)試比較Sn與n3的大小,并說(shuō)明理由.
【答案】
(1)解:取x=1,可得 .
對(duì)等式兩邊求導(dǎo),得 ,
取x=2,則
(2)解:要比較Sn與n3的大小,即比較:3n﹣1與n2的大小,
當(dāng)n=1,2時(shí),3n﹣1<n2; 當(dāng)n=3時(shí),3n﹣1=n2;當(dāng)n=4,5時(shí),3n﹣1>n2.
猜想:當(dāng)n≥4時(shí),3n﹣1>n2,下面用數(shù)學(xué)歸納法證明:
由上述過(guò)程可知,n=4時(shí)結(jié)論成立,
假設(shè)當(dāng)n=k,(k≥4)時(shí)結(jié)論成立,即3k﹣1>k2,
當(dāng)n=k+1時(shí),3(k+1)﹣1=33k﹣1>3k2.
而3k2﹣(k+1)2=2k2﹣2k﹣1=2k(k﹣1)﹣1≥2×4×3﹣1=23>0,
∴3(k+1)﹣1>33k﹣1>3k2>(k+1)2,故當(dāng)n=k+1時(shí)結(jié)論也成立,
∴當(dāng)n≥4時(shí),3n﹣1>n2成立.
綜上得,當(dāng)n=1,2時(shí), ; 當(dāng)n=3時(shí), ;當(dāng)n≥4,n∈N*時(shí),
【解析】(1)取x=1,即可求得 a0的值.對(duì)所給的等式兩邊求導(dǎo),再取x=2,可得Sn的值.(2)要比較Sn與n3的大小,即比較:3n﹣1與n2的大小,當(dāng)n=1,2時(shí),3n﹣1<n2; 當(dāng)n=3時(shí),3n﹣1=n2; 當(dāng)n=4,5時(shí),3n﹣1>n2 . 猜想:當(dāng)n≥4時(shí),3n﹣1>n2 , 再用數(shù)學(xué)歸納法證明.
【考點(diǎn)精析】通過(guò)靈活運(yùn)用數(shù)列的前n項(xiàng)和,掌握數(shù)列{an}的前n項(xiàng)和sn與通項(xiàng)an的關(guān)系即可以解答此題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(1)若關(guān)于的不等式在上恒成立,求的取值范圍;
(2)設(shè)函數(shù),若在上有兩個(gè)不同極值點(diǎn),求的取值范圍,并判斷極值的正負(fù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在統(tǒng)計(jì)學(xué)中,偏差是指?jìng)(gè)別測(cè)定值與測(cè)定的平均值之差,在成績(jī)統(tǒng)計(jì)中,我們把某個(gè)同學(xué)的某刻考試成績(jī)與該科班平均分的差叫某科偏差,班主任為了了解個(gè)別學(xué)生的偏科情況,對(duì)學(xué)生數(shù)學(xué)偏差(單位:分)與物理偏差(單位:分)之間的關(guān)系進(jìn)行偏差分析,決定從全班40位同學(xué)中隨機(jī)抽取一個(gè)容量為8的樣本進(jìn)行分析,得到他們的兩科成績(jī)偏差數(shù)據(jù)如表:
(1)已知與之間具有線性相關(guān)關(guān)系,求關(guān)于的線性回歸方程;
(2)若這次考試該班數(shù)學(xué)平均分為120分,物理平均分為92,試預(yù)測(cè)數(shù)學(xué)成績(jī)126分的同學(xué)的物理成績(jī).
參考公式: ,
參考數(shù)據(jù): ,
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知關(guān)于x的函數(shù) .
(1)如果函數(shù) ,求b、c;
(2)設(shè)當(dāng)x∈( ,3)時(shí),函數(shù)y=f(x)﹣c(x+b)的圖象上任一點(diǎn)P處的切線斜率為k,若k≤2,求實(shí)數(shù)b的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(Ⅰ)求函數(shù)的單調(diào)遞增區(qū)間;
(Ⅱ)把的圖象上所有點(diǎn)的橫坐標(biāo)伸長(zhǎng)到原來(lái)的2倍(縱坐標(biāo)不變),再把得到的圖象向左平移個(gè)單位,得到函數(shù)的圖象,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知△ABC的頂點(diǎn)A(5,1),AB邊上的中線CM所在直線方程為2x﹣y﹣5=0,∠B的平分線BN所在直線方程為x﹣2y﹣5=0.求:
(1)頂點(diǎn)B的坐標(biāo);
(2)直線BC的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在正方體ABCD﹣A1B1C1D1中,M,N分別是BC1 , CD1的中點(diǎn),則下列說(shuō)法錯(cuò)誤的是( )
A.MN與CC1垂直
B.MN與AC垂直
C.MN與BD平行
D.MN與A1B1平行
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)在點(diǎn)處的切線為.
(1)求實(shí)數(shù), 的值;
(2)是否存在實(shí)數(shù),當(dāng)時(shí),函數(shù)的最小值為,若存在,求出的取值范圍;若不存在,說(shuō)明理由;
(3)若,求證: .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù),且.
(Ⅰ)當(dāng)時(shí),求曲線在點(diǎn)處的切線方程;
(Ⅱ)求函數(shù)的單調(diào)區(qū)間;
(Ⅲ)若函數(shù)有最值,寫出的取值范圍.(只需寫出結(jié)論)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com