已知圓O:x2+y2=4,圓O與x軸交于A,B兩點(diǎn),過(guò)點(diǎn)B的圓的切線為l,P是圓上異于A,B的一點(diǎn),PH垂直于x軸,垂足為H,E是PH的中點(diǎn),延長(zhǎng)AP,AE分別交l于F,C.
(1)若點(diǎn)P(1,數(shù)學(xué)公式),求以FB為直徑的圓的方程,并判斷P是否在圓上;
(2)當(dāng)P在圓上運(yùn)動(dòng)時(shí),證明:直線PC恒與圓O相切.

(1)證明:由P(1,),A(-2,0)
∴直線AP的方程為
令x=2,得F(2,).(2分)
由E(1,),A(-2,0),則直線AE的方程為y=(x+2),
令x=2,得C(2,).(4分)
∴C為線段FB的中點(diǎn),以FB為直徑的圓恰以C為圓心,半徑等于
∴圓的方程為,且P在圓上;
(2)證明:設(shè)P(x0,y0),則E(x0,),則直線AE的方程為
在此方程中令x=2,得C(2,
直線PC的斜率為=-=-
若x0=0,則此時(shí)PC與y軸垂直,即PC⊥OP; (13分)
若x0≠0,則此時(shí)直線OP的斜率為,
×(-)=-1
∴PC⊥OP
∴直線PC與圓O相切.(16分)
分析:(1)先確定直線AP的方程為,求得F(2,),確定直線AE的方程為y=(x+2),求得C(2,),由此可得圓的方程;
(2)設(shè)P(x0,y0),則E(x0),求得直線AE的方程,進(jìn)而可確定直線PC的斜率,由此即可證得直線PC與圓O相切.
點(diǎn)評(píng):本題考查直線與圓的位置關(guān)系,考查圓的方程,解題的關(guān)鍵是確定圓的圓心與半徑,利用斜率關(guān)系確定直線與圓相切.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)已知圓O:x2+y2=2交x軸于A,B兩點(diǎn),曲線C是以AB為長(zhǎng)軸,離心率為
2
2
的橢圓,其左焦點(diǎn)為F.若P是圓O上一點(diǎn),連接PF,過(guò)原點(diǎn)O作直線PF的垂線交橢圓C的左準(zhǔn)線于點(diǎn)Q.
(1)求橢圓C的標(biāo)準(zhǔn)方程;
(2)若點(diǎn)P的坐標(biāo)為(1,1),求證:直線PQ與圓O相切;
(3)試探究:當(dāng)點(diǎn)P在圓O上運(yùn)動(dòng)時(shí)(不與A、B重合),直線PQ與圓O是否保持相切的位置關(guān)系?若是,請(qǐng)證明;若不是,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)已知圓o:x2+y2=b2與橢圓
x2
a2
+
y2
b2
=1(a>b>0)
有一個(gè)公共點(diǎn)A(0,1),F(xiàn)為橢圓的左焦點(diǎn),直線AF被圓所截得的弦長(zhǎng)為1.
(1)求橢圓方程.
(2)圓o與x軸的兩個(gè)交點(diǎn)為C、D,B( x0,y0)是橢圓上異于點(diǎn)A的一個(gè)動(dòng)點(diǎn),在線段CD上是否存在點(diǎn)T(t,0),使|BT|=|AT|,若存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知圓O:x2+y2=9,定點(diǎn) A(6,0),直線l:3x-4y-25=0
(1)若P為圓O上動(dòng)點(diǎn),求線段PA的中點(diǎn)M的軌跡方程
(2)設(shè)E、F分別是圓O和直線l上任意一點(diǎn),求線段EF的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•廣州一模)已知圓O:x2+y2=r2,點(diǎn)P(a,b)(ab≠0)是圓O內(nèi)一點(diǎn),過(guò)點(diǎn)P的圓O的最短弦所在的直線為l1,直線l2的方程為ax+by+r2=0,那么( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知圓O:x2+y2=1,點(diǎn)P在直線x=
3
上,O為坐標(biāo)原點(diǎn),若圓O上存在點(diǎn)Q,使∠OPQ=30°,則點(diǎn)P的縱坐標(biāo)y0的取值范圍是( 。

查看答案和解析>>

同步練習(xí)冊(cè)答案