已知圓O:x2+y2=9,定點(diǎn) A(6,0),直線l:3x-4y-25=0
(1)若P為圓O上動點(diǎn),求線段PA的中點(diǎn)M的軌跡方程
(2)設(shè)E、F分別是圓O和直線l上任意一點(diǎn),求線段EF的最小值.
分析:(1)利用M是線段PA的中點(diǎn),尋找動點(diǎn)與定點(diǎn)之間的關(guān)系,借助于P在圓O上,從而求出M的軌跡方程
(2)根據(jù)圖形易知,當(dāng)且僅當(dāng)過圓心垂直于已知直線時取得最大與最小值.
解答:(1)解:設(shè)圓O上動點(diǎn)P(x1,y1),線段PA的中點(diǎn)M(x,y)
由P在圓O上,得x12+y12=9,…(I)
又M是線段PA的中點(diǎn),則
x1+6=2x
y1+0=2y
,∴
x1=2x-6
y1=2y
∴P(2x-6,2y)
將P點(diǎn)坐標(biāo)代入(I)得:(2x-6)2+(2y)2=9,
故;(x-3)2+(y)2=
9
4
是所求的軌跡方程.
(2)解:過點(diǎn)O作直線OK⊥l于K,交圓O于A、B兩點(diǎn)(如圖2)|EF|min=|AK|=|OK|-|OA|=5-3=2
點(diǎn)評:本題主要考查代入法求軌跡,考查數(shù)形結(jié)合的數(shù)學(xué)思想,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)已知圓O:x2+y2=2交x軸于A,B兩點(diǎn),曲線C是以AB為長軸,離心率為
2
2
的橢圓,其左焦點(diǎn)為F.若P是圓O上一點(diǎn),連接PF,過原點(diǎn)O作直線PF的垂線交橢圓C的左準(zhǔn)線于點(diǎn)Q.
(1)求橢圓C的標(biāo)準(zhǔn)方程;
(2)若點(diǎn)P的坐標(biāo)為(1,1),求證:直線PQ與圓O相切;
(3)試探究:當(dāng)點(diǎn)P在圓O上運(yùn)動時(不與A、B重合),直線PQ與圓O是否保持相切的位置關(guān)系?若是,請證明;若不是,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)已知圓o:x2+y2=b2與橢圓
x2
a2
+
y2
b2
=1(a>b>0)
有一個公共點(diǎn)A(0,1),F(xiàn)為橢圓的左焦點(diǎn),直線AF被圓所截得的弦長為1.
(1)求橢圓方程.
(2)圓o與x軸的兩個交點(diǎn)為C、D,B( x0,y0)是橢圓上異于點(diǎn)A的一個動點(diǎn),在線段CD上是否存在點(diǎn)T(t,0),使|BT|=|AT|,若存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•廣州一模)已知圓O:x2+y2=r2,點(diǎn)P(a,b)(ab≠0)是圓O內(nèi)一點(diǎn),過點(diǎn)P的圓O的最短弦所在的直線為l1,直線l2的方程為ax+by+r2=0,那么(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知圓O:x2+y2=1,點(diǎn)P在直線x=
3
上,O為坐標(biāo)原點(diǎn),若圓O上存在點(diǎn)Q,使∠OPQ=30°,則點(diǎn)P的縱坐標(biāo)y0的取值范圍是(  )

查看答案和解析>>

同步練習(xí)冊答案