【題目】設(shè)函數(shù),其中,

(1)求的單調(diào)區(qū)間;

(2)若存在極值點(diǎn),其中,求證;

(3)設(shè),函數(shù),求證在區(qū)間上的最大值不小于

【答案】(1)當(dāng)時(shí),的單調(diào)遞增區(qū)間為,,單調(diào)遞減區(qū)間為,單調(diào)遞增區(qū)間為,;(2)證明見解析;(3)證明見解析.

【解析】

試題分析:(1)求出的導(dǎo)數(shù),討論時(shí),,上遞增;當(dāng)時(shí),由導(dǎo)數(shù)大

,可得增區(qū)間;導(dǎo)數(shù)小于,可得減區(qū)間;(2),可得,分別計(jì)算,,化簡(jiǎn)整理即可得證;(3)要證在區(qū)間上的最大值不小于,即證在上存在,使得,運(yùn)用單調(diào)性和極值,化簡(jiǎn)整理即可得證.

試題解析:(1)解:由,可得

下面分兩種情況討論:

當(dāng)時(shí),有恒成立,所以的單調(diào)遞增區(qū)間為

當(dāng)時(shí),令,解得,或

當(dāng)變化時(shí),,的變化情況如下表:

0

0

極大值

極小值

所以的單調(diào)遞減區(qū)間為,單調(diào)遞增區(qū)間為,

(2)證明:因?yàn)?/span>存在極值點(diǎn),所以由(1)知,且,

由題意,得,即,

進(jìn)而,

,

即為,即有,即為

(3)要證在區(qū)間上的最大值不小于,即證在上存在,使得

,

,,,

由于,成立.

綜上可得,在區(qū)間上的最大值不小于

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)函數(shù)在點(diǎn)處的切線為

1)求函數(shù)的值,并求出上的單調(diào)區(qū)間;

2)若,且,求證:

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】為選拔參加“全市高中數(shù)學(xué)競(jìng)賽”的選手,某中學(xué)舉行了一次“數(shù)學(xué)競(jìng)賽”活動(dòng).為了了解本次競(jìng)賽學(xué)生的成績(jī)情況,從中抽取了部分學(xué)生的分?jǐn)?shù)(得分取正整數(shù),滿分為分)作為樣本(樣本容量為)進(jìn)行統(tǒng)計(jì).按照的分組作出頻率分布直方圖,并作出樣本分?jǐn)?shù)的莖葉圖(圖中僅列出了得分在的數(shù)據(jù)).

(1)求樣本容和頻率分布直方圖中的值并求出抽取學(xué)生的平均分;

(2)在選取的樣本中,從競(jìng)賽成績(jī)?cè)?/span>分以上(含)的學(xué)生中隨機(jī)抽取名學(xué)生參加“全市中數(shù)學(xué)競(jìng)賽”求所抽取的名學(xué)生中至少有一人得分在內(nèi)的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在四棱錐PABCD中,底面ABCD是正方形,側(cè)棱PD垂直于底面ABCDPDDC,點(diǎn)E是PC的中點(diǎn)

(Ⅰ)求證:PA∥平面EBD;

)求二面角EBDP的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某科研小組研究發(fā)現(xiàn):一棵水蜜桃樹的產(chǎn)量(單位:百千克)與肥料費(fèi)用(單位:百元)滿足如下關(guān)系:,且投入的肥料費(fèi)用不超過(guò)5百元.此外,還需要投入其他成本(如施肥的人工費(fèi)等)百元.已知這種水蜜桃的市場(chǎng)售價(jià)為16元/千克(即16百元/百千克),且市場(chǎng)需求始終供不應(yīng)求.記該棵水蜜桃樹獲得的利潤(rùn)為(單位:百元).

(1)求利潤(rùn)函數(shù)的函數(shù)關(guān)系式,并寫出定義域;

(2)當(dāng)投入的肥料費(fèi)用為多少時(shí),該水蜜桃樹獲得的利潤(rùn)最大?最大利潤(rùn)是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)

(1)求函數(shù)在點(diǎn)處的切線方程;

(2)求函數(shù)的單調(diào)區(qū)間;

(3)若存在,使得是自然對(duì)數(shù)的底數(shù)),求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】先后2次拋擲一枚骰子,將得到的點(diǎn)數(shù)分別記為

)求滿足的概率;

)設(shè)三條線段的長(zhǎng)分別為5,求這三條線段能圍成等腰三角形(含等邊三角形)的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在直角坐標(biāo)系中,曲線的參數(shù)方程為為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn), 軸的正半軸為極軸建立極坐標(biāo)系,直線的極坐標(biāo)方程為,直線的極坐標(biāo)方程為 的交點(diǎn)為.

(1)判斷點(diǎn)與曲線的位置關(guān)系;

(2)點(diǎn)為曲線上的任意一點(diǎn),求的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】《中國(guó)好聲音The Voice of China》是由浙江衛(wèi)視聯(lián)合星空傳媒旗下燦星制作強(qiáng)力打造的大型勵(lì)志專業(yè)音樂評(píng)論節(jié)目,于2012年7月13日正式在浙江衛(wèi)視播出.每期節(jié)目有四位導(dǎo)師參加.導(dǎo)師背對(duì)歌手,當(dāng)每位參賽選手演唱完之前有導(dǎo)師為其轉(zhuǎn)身,則該選手可以選擇加入為其轉(zhuǎn)身的導(dǎo)師的團(tuán)隊(duì)中接受指導(dǎo)訓(xùn)練.已知某期《中國(guó)好聲音》中,6位選手演唱完后,四位導(dǎo)師為其轉(zhuǎn)身的情況如下表所示:

現(xiàn)從這6位選手中隨機(jī)抽取兩人考查他們演唱完后導(dǎo)師的轉(zhuǎn)身情況.

1求選出的兩人導(dǎo)師為其轉(zhuǎn)身的人數(shù)和為4的概率;

2記選出的2人導(dǎo)師為其轉(zhuǎn)身的人數(shù)之和為,求的分布列及數(shù)學(xué)期望.

查看答案和解析>>

同步練習(xí)冊(cè)答案