【題目】已知函數(shù), , 的導(dǎo)數(shù),若存在,使得成立,則實數(shù)的取值范圍是( )

A. B. C. D.

【答案】D

【解析】存在,使得成立,等價于的最大值不小于的最小值, , , ,的最大值為下面用排除法解答,若,符合題意,可排除選項當(dāng)時, ,,遞增, ,即的最小值為 的最大值為小于的最小值,所以不合題意,可排除選項 ,故選D.

方法點睛】本題主要考查函數(shù)的最值以及排除法解選擇題,屬于難題. 用特例代替題設(shè)所給的一般性條件,得出特殊結(jié)論,然后對各個選項進(jìn)行檢驗,從而做出正確的判斷,這種方法叫做特殊法. 若結(jié)果為定值,則可采用此法. 特殊法是“小題小做”的重要策略,排除法解答選擇題是高中數(shù)學(xué)一種常見的解題思路和方法,這種方法即可以提高做題速度和效率,又能提高準(zhǔn)確性,這種方法主要適合下列題型:(1)求值問題(可將選項逐個驗證);(2)求范圍問題(可在選項中取特殊值,逐一排除);(3)圖象問題(可以用函數(shù)性質(zhì)及特殊點排除);(4)解方程、求解析式、求通項、求前 項和公式問題等等.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某射擊運動員進(jìn)行射擊訓(xùn)練,前三次射擊在靶上的著彈點剛好是邊長為的等邊三角形的三個頂點.

(Ⅰ)第四次射擊時,該運動員瞄準(zhǔn)區(qū)域射擊(不會打到外),則此次射擊的著彈點距的距離都超過的概率為多少?(彈孔大小忽略不計)

(Ⅱ) 該運動員前三次射擊的成績(環(huán)數(shù))都在區(qū)間內(nèi),調(diào)整一下后,又連打三槍,其成績(環(huán)數(shù))都在區(qū)間內(nèi).現(xiàn)從這次射擊成績中隨機抽取兩次射擊的成績(記為)進(jìn)行技術(shù)分析.求事件“”的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為了配合新冠疫情防控,某市組織了以停課不停學(xué),成長不停歇為主題的空中課堂,為了了解一周內(nèi)學(xué)生的線上學(xué)習(xí)情況,從該市中抽取1000名學(xué)生進(jìn)行調(diào)査,根據(jù)所得信息制作了如圖所示的頻率分布直方圖.

1)為了估計從該市任意抽取的3名同學(xué)中恰有2人線上學(xué)習(xí)時間在[200,300)的概率,特設(shè)計如下隨機模擬的方法:先由計算器產(chǎn)生09之間取整數(shù)值的隨機數(shù),依次用0,1,2,3,…9的前若干個數(shù)字表示線上學(xué)習(xí)時間在[200,300)的同學(xué),剩余的數(shù)字表示線上學(xué)習(xí)時間不在[200,300)的同學(xué);再以每三個隨機數(shù)為一組,代表線上學(xué)習(xí)的情況.

假設(shè)用上述隨機模擬方法已產(chǎn)生了表中的30組隨機數(shù),請根據(jù)這批隨機數(shù)估計概率的值;

907 966 191 925 271 569 812 458 932 683 431 257 027 556

438 873 730 113 669 206 232 433 474 537 679 138 602 231

2)為了進(jìn)一步進(jìn)行調(diào)查,用分層抽樣的方法從這1000名學(xué)生中抽出20名同學(xué),在抽取的20人中,再從線上學(xué)習(xí)時間[350,450)(350分鐘至450分鐘之間)的同學(xué)中任意選擇兩名,求這兩名同學(xué)來自同一組的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),,若函數(shù)有三個不同的零點,,(其中),則的取值范圍為__________

【答案】

【解析】如圖:

,作出函數(shù)圖象如圖所示

,作出函數(shù)圖象如圖所示

,由有三個不同的零點

,如圖

為滿足有三個零點,如圖可得

,

點睛:本題考查了函數(shù)零點問題,先由導(dǎo)數(shù)求出兩個函數(shù)的單調(diào)性,繼而畫出函數(shù)圖像,再由函數(shù)的零點個數(shù)確定參量取值范圍,將問題轉(zhuǎn)化為函數(shù)的兩根問題來求解,本題需要化歸轉(zhuǎn)化,函數(shù)的思想,零點問題等較為綜合,有很大難度。

型】填空
結(jié)束】
17

【題目】已知等比數(shù)列的前項和為,且滿足.

(1)求數(shù)列的通項公式;

(2)若數(shù)列滿足,求數(shù)列的前項和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】德國著名數(shù)學(xué)家狄利克雷在數(shù)學(xué)領(lǐng)域成就顯著,以其命名的函數(shù)被稱為狄利克雷函數(shù),其中R為實數(shù)集,Q為有理數(shù)集,以下命題正確的個數(shù)是( )

下面給出關(guān)于狄利克雷函數(shù)f(x)的五個結(jié)論:

①對于任意的xR,都有f(f(x))=1;

②函數(shù)f(x)偶函數(shù);

③函數(shù)f(x)的值域是{0,1};

④若T0T為有理數(shù),則f(x+T)=f(x)對任意的xR恒成立;

⑤在f(x)圖象上存在不同的三個點A,B,C,使得△ABC為等邊角形.

A.2B.3C.4D.5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖一塊長方形區(qū)域ABCD,AD=2(km),AB=1(km).在邊AD的中點O處,有一個可轉(zhuǎn)動的探照燈,其照射角∠EOF始終為,設(shè)∠AOE=,探照燈O照射在長方形ABCD內(nèi)部區(qū)域的面積為S.

(1)當(dāng)0時,寫出S關(guān)于的函數(shù)表達(dá)式;

(2)若探照燈每9分鐘旋轉(zhuǎn)“一個來回”(OEOA轉(zhuǎn)到OC,再回到OA,稱“一個來回”,忽略OEOAOC反向旋轉(zhuǎn)時所用時間),且轉(zhuǎn)動的角速度大小一定,設(shè)AB邊上有一點G,且∠AOG,求點G在“一個來回”中,被照到的時間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】對于,②,③,④,⑤與⑥,選擇恰當(dāng)?shù)年P(guān)系式序號填空:

1)角為第一象限角的充要條件是_____

2)角為第二象限角的充要條件是_____;

3)角為第三象限角的充要條件是_____

4)角為第四象限角的充要條件是______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】定義在上的函數(shù)滿足:對于任意實數(shù)都有恒成立,且當(dāng)時,

(Ⅰ)判定函數(shù)的單調(diào)性,并加以證明;

(Ⅱ)設(shè),若函數(shù)有三個零點從小到大分別為,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知,函數(shù)

1)若關(guān)于的方程的解集中恰有一個元素,求的值;

2)設(shè),若對任意,函數(shù)在區(qū)間上的最大值與最小值的差不超過,求的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案