【題目】在中,已知A,a,b,給出下列說法:
①若,則此三角形最多有一解;
②若,且,則此三角形為直角三角形,且;
③當(dāng),且時(shí),此三角形有兩解.
其中正確說法的個(gè)數(shù)為( )
A.0B.1C.2D.3
【答案】C
【解析】
對(duì)于①,由,根據(jù)大角對(duì)大邊得,進(jìn)而得到為銳角,即此三角形最多有一解,此說法正確;對(duì)于②,若,且,得到,此三角形為直角三角形,且,此說法正確;對(duì)于③取一個(gè)特例:時(shí),,由為銳角,得到也為銳角,此三角形只有一解,此說法錯(cuò)誤;從而得到結(jié)果.
由,知B為銳角,則此三角形最多有一解,故①說法正確;
若,且,則,即,此三角形為直角三角形,
故②說法正確;
當(dāng),且時(shí),A=B,此三角形為等腰三角形,只有一解,故③說法錯(cuò)誤.
故正確說法的個(gè)數(shù)為2.
故選:C
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓:的兩個(gè)焦點(diǎn)與短軸的一個(gè)端點(diǎn)恰好圍成一個(gè)面積為的等邊三角形.
(1)求橢圓的方程;
(2)如圖,設(shè)橢圓的左右頂點(diǎn)分別為、,右焦點(diǎn)為,是橢圓上異于,的動(dòng)點(diǎn),直線與橢圓在點(diǎn)處的切線交于點(diǎn),當(dāng)點(diǎn)運(yùn)動(dòng)時(shí),試判斷以為直徑的圓與直線的位置關(guān)系,并加以證明.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】一湖中有不在同一直線的三個(gè)小島A、B、C,前期為開發(fā)旅游資源在A、B、C三島之間已經(jīng)建有索道供游客觀賞,經(jīng)測(cè)量可知AB兩島之間距離為3公里,BC兩島之間距離為5公里,AC兩島之間距離為7公里,現(xiàn)調(diào)查后發(fā)現(xiàn),游客對(duì)在同一圓周上三島A、B、C且位于(優(yōu)弧)一片的風(fēng)景更加喜歡,但由于環(huán)保、安全等其他原因,沒辦法盡可能一次游覽更大面積的湖面風(fēng)光,現(xiàn)決定在上選擇一個(gè)點(diǎn)D建立索道供游客游覽,經(jīng)研究論證為使得游覽面積最大,只需使得△ADC面積最大即可.則當(dāng)△ADC面積最大時(shí)建立索道AD的長為______公里.(注:索道兩端之間的長度視為線段)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖放置的邊長為1的正方形沿軸順時(shí)針滾動(dòng)一周,設(shè)頂點(diǎn)的運(yùn)動(dòng)軌跡與軸所圍區(qū)域?yàn)?/span>,若在平面區(qū)域內(nèi)任意取一點(diǎn),則所取的點(diǎn)恰好落在區(qū)域內(nèi)部的概率為
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】一個(gè)正方形花圃被分成5份.
(1)若給這5個(gè)部分種植花,要求相鄰兩部分種植不同顏色的花,己知現(xiàn)有紅、黃、藍(lán)、綠4種顏色不同的花,求有多少種不同的種植方法?
(2)若將6個(gè)不同的盆栽都擺放入這5個(gè)部分,且要求每個(gè)部分至少有一個(gè)盆栽,問有多少種不同的放法?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知奇函數(shù).
(1)求實(shí)數(shù)的值;
(2)判斷函數(shù)在其定義域上的單調(diào)性,并用定義證明;
(3)若對(duì)所有的恒成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com