【題目】已知函數(shù)f(x)=ax2﹣x,若對任意x1 , x2∈[2,+∞),且x1≠x2 , 不等式 >0恒成立,則實(shí)數(shù)a的取值范圍是(
A.
B.
C.
D.

【答案】D
【解析】解:不妨設(shè)x2>x1≥2,
= = = =a(x1+x2)﹣1,
∵對任意x1 , x2∈[2,+∞),且x1≠x2 >0恒成立,
∴x2>x1≥2時(shí),a(x1+x2)﹣1>0,即a> 恒成立
∵x2>x1≥2

∴a ,即a的取值范圍為[ ,+∞)
故本題選D
【考點(diǎn)精析】本題主要考查了函數(shù)單調(diào)性的判斷方法的相關(guān)知識點(diǎn),需要掌握單調(diào)性的判定法:①設(shè)x1,x2是所研究區(qū)間內(nèi)任兩個(gè)自變量,且x1<x2;②判定f(x1)與f(x2)的大;③作差比較或作商比較才能正確解答此題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線C:y=2x2 , 直線l:y=kx+2交C于A,B兩點(diǎn),M是線段AB的中點(diǎn),過M作x軸的垂線C于點(diǎn)N.
(1)證明:拋物線C在點(diǎn)N處的切線與AB平行;
(2)是否存在實(shí)數(shù)k使以AB為直徑的圓M經(jīng)過點(diǎn)N,若存在,求k的值,若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知曲線C的極坐標(biāo)方程是ρ=2cosθ,以極點(diǎn)為平面直角坐標(biāo)系的原點(diǎn),極軸為x軸的正半軸,建立平面直角坐標(biāo)系,直線L的參數(shù)方程是 (t為參數(shù)).
(1)求曲線C的直角坐標(biāo)方程和直線L的普通方程;
(2)設(shè)點(diǎn)P(m,0),若直線L與曲線C交于A,B兩點(diǎn),且|PA||PB|=1,求實(shí)數(shù)m的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的左、右頂點(diǎn)分別為A,B,直線l斜率大于0,且l經(jīng)過橢圓的右焦點(diǎn)F,與橢圓交于兩點(diǎn)P,Q,若△AFP,△BFQ的面積分別為S1,S2,若,則直線l的斜率為_____

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列{an}是無窮數(shù)列,滿足lgan+1=|lgan﹣lgan1|(n=2,3,4,…).
(1)若a1=2,a2=3,求a3 , a4 , a5的值;
(2)求證:“數(shù)列{an}中存在ak(k∈N*)使得lgak=0”是“數(shù)列{an}中有無數(shù)多項(xiàng)是1”的充要條件;
(3)求證:在數(shù)列{an}中ak(k∈N*),使得1≤ak<2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè),是兩條不同的直線, ,是兩個(gè)不同的平面,則下列命題中正確的是

A. ,, 則

B. ,,則

C. ,, ,則

D. ,,則

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知A,B,C,D四點(diǎn)共面,且CD=1,BC=2,AB=4,∠ABC=120°,cos∠BDC=

(1)求sin∠DBC;
(2)求AD.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】拋物線的頂點(diǎn)為坐標(biāo)原點(diǎn)O,焦點(diǎn)F在軸正半軸上,準(zhǔn)線與圓相切.

)求拋物線的方程;

)已知直線和拋物線交于點(diǎn),命題若直線過定點(diǎn)(0,1),則

請判斷命題的真假,并證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】 屆夏季奧林匹克運(yùn)動會將于2016年8月5日 21日在巴西里約熱內(nèi)盧舉行.下表是近五屆奧運(yùn)會中國代表團(tuán)和俄羅斯代表團(tuán)獲得的金牌數(shù)的統(tǒng)計(jì)數(shù)據(jù)(單位:枚).

 

第31屆里約

第30屆倫敦

第29屆北京

第28屆雅典

第27屆悉尼

中國

26

38

51

32

28

俄羅斯

19

24

24

27

32

(1)根據(jù)表格中兩組數(shù)據(jù)完成近五屆奧運(yùn)會兩國代表團(tuán)獲得的金牌數(shù)的莖葉圖,并通過莖葉圖比較兩國代表團(tuán)獲得的金牌數(shù)的平均值及分散程度(不要求計(jì)算出具體數(shù)值,給出結(jié)論即可);

(2)下表是近五屆奧運(yùn)會中國代表團(tuán)獲得的金牌數(shù)之和 (從第 屆算起,不包括之前已獲得的金牌數(shù))隨時(shí)間 (時(shí)間代號)變化的數(shù)據(jù):

27

28

29

30

31

時(shí)間代號(x)

1

2

3

4

5

金牌數(shù)之和(y枚)

28

60

111

149

175

作出散點(diǎn)圖如下:

①由圖中可以看出,金牌數(shù)之和 與時(shí)間代號 之間存在線性相關(guān)關(guān)系,請求出 關(guān)于 的線性回歸方程;

②利用①中的回歸方程,預(yù)測2020年第32屆奧林匹克運(yùn)動會中國代表團(tuán)獲得的金牌數(shù).

參考數(shù)據(jù):,,

附:對于一組數(shù)據(jù) ,,,,其回歸直線的斜率的最小二乘估計(jì)為

查看答案和解析>>

同步練習(xí)冊答案