【題目】出如下命題:

命題 中,若,則 的逆命題為真命題;

若動(dòng)點(diǎn)到兩定點(diǎn)的距離之和為,則動(dòng)點(diǎn)軌跡為線段;

為假命題,則都是假命題;

設(shè),則的必要不充分條件

若實(shí)數(shù)成等比數(shù)列,則圓錐曲線的離心率為;

其中所有正確命題的序號是_________.

【答案】①②④

【解析】

試題分析:命題“在中,若,則”的逆命題為“在中,若,則”,是真命題;若動(dòng)點(diǎn)到兩定點(diǎn)的距離之和為,則動(dòng)點(diǎn)的軌跡為線段,正確,原因是只有線段上的點(diǎn)到定點(diǎn)的距離之和為;為假命題,則都是假命題,錯(cuò)誤,原因是只要中有一個(gè)是假命題,就有為假命題;設(shè),由能得到,反之由不一定有.則“”是“”的必要不充分條件若實(shí)數(shù)成等比數(shù)列,則,.,圓錐曲線表示焦點(diǎn)在軸上的雙曲線,此時(shí),,,圓錐曲線的離心率為,命題錯(cuò)誤.因此,本題正確答案是①②④.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】若集合A={﹣1,1},B={x|mx=1},且A∪B=A,則m的值為

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=lg(1+x)lg(1x).

(1)求函數(shù)f(x)的定義域;

(2)判斷函數(shù)f(x)的奇偶性,并說明理由;

(3)若f(x)>0,求x的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù),是定義域是的奇函數(shù).

1的值,判斷并證明當(dāng)時(shí),函數(shù)上的單調(diào)性;

2已知,函數(shù),求的值域;

3已知,若對于時(shí)恒成立,請求出最大的整數(shù)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

1當(dāng)時(shí),求函數(shù)上的最小值和最大值;

2當(dāng)時(shí),討論函數(shù)的單調(diào)性;

3是否存在實(shí)數(shù),對任意的,且,都有恒成立,若存在,求出的取值范圍;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

1)當(dāng)a=1時(shí),求函數(shù)fx)在[1,e]上的最小值和最大值;

2)當(dāng)a≤0時(shí),討論函數(shù)fx)的單調(diào)性;

3)是否存在實(shí)數(shù)a,對任意的x1,x20,+∞,x1≠x2,都有恒成立.若存在,求出a的取值范圍;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】選修4-1:幾何證明選講

如圖所示,已知PA與⊙O相切,A為切點(diǎn),PBC為割線,弦CD∥AP,AD、BC相交于E點(diǎn),F(xiàn)為CE上一點(diǎn),且DE2=EF·EC

1求證:P=EDF;

2求證:CE·EB=EF·EP.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】中,直線的參數(shù)方程為為參數(shù),在極坐標(biāo)系與直角坐標(biāo)系取相同的長度單位,且以原點(diǎn)為極點(diǎn),以軸正半軸為極軸中,圓的方程為.

1求圓的直角坐標(biāo)方程;

2設(shè)圓與直線交于點(diǎn),若點(diǎn)的直角坐標(biāo)為,求的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列事件中,是必然事件的是(

A.任意買一張電影票,座位號是2的倍數(shù)B.13個(gè)人中至少有兩個(gè)人生肖相同

C.車輛隨機(jī)到達(dá)一個(gè)路口,遇到紅燈D.明天一定會下雨

查看答案和解析>>

同步練習(xí)冊答案