【題目】已知函數(shù).
(1)若曲線在處的切線方程為,求實數(shù),的值;
(2)若,且在區(qū)間上恒成立,求實數(shù)的取值范圍;
(3)若,且,討論函數(shù)的單調(diào)性.
【答案】(1)(2).(3)見解析
【解析】
(1先求導,再由求解..
(2)由,,在區(qū)間上恒成立,轉(zhuǎn)化為在上恒成立,令,再用導數(shù)法求解.
(3)由,,求導得,令,
分,兩種情況討論.
(1)由題意,得,
則,解得.
(2)當時,,在區(qū)間上恒成立,
即在上恒成立,
設(shè),則,
令,可得,單調(diào)遞增;
令,可得,單調(diào)遞減;
所以,即,故.
(3)當時,,
則,
令,
當時,,
所以,在內(nèi),∴,∴單調(diào)遞增,
在內(nèi),∴,∴單調(diào)遞減.
當時,,
令,解得或,
所以,在和內(nèi),,∴,
∴單調(diào)遞增;
在內(nèi),,∴,
∴單調(diào)遞減.
綜上, 當時, 在上單調(diào)遞增,在單調(diào)遞減.
當時,∴在和單調(diào)遞增;在∴單調(diào)遞減.
科目:高中數(shù)學 來源: 題型:
【題目】如圖甲,AD,BC是等腰梯形CDEF的兩條高,,點M是線段AE的中點,將該等腰梯形沿著兩條高AD,BC折疊成如圖乙所示的四棱錐P-ABCD(E,F重合,記為點P).
甲 乙
(1)求證:;
(2)求點M到平面BDP距離h.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】哈三中團委組織了“古典詩詞”的知識競賽,從參加考試的學生中抽出60名學生(男女各30名),將其成績分成六組,,…,,其部分頻率分布直方圖如圖所示.
(Ⅰ)求成績在的頻率,補全這個頻率分布直方圖,并估計這次考試的眾數(shù)和中位數(shù);
(Ⅱ)從成績在和的學生中選兩人,求他們在同一分數(shù)段的概率;
(Ⅲ)我們規(guī)定學生成績大于等于80分時為優(yōu)秀,經(jīng)統(tǒng)計男生優(yōu)秀人數(shù)為4人,補全下面表格,并判斷是否有99%的把握認為成績是否優(yōu)秀與性別有關(guān)?
優(yōu)秀 | 非優(yōu)秀 | 合計 | |
男 | 4 | 30 | |
女 | 30 | ||
合計 | 60 |
0.025 | 0.010 | 0.005 | 0.001 | |
5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】甲、乙兩班舉行數(shù)學知識競賽,參賽學生的競賽得分統(tǒng)計結(jié)果如下表:
班級 | 參賽人數(shù) | 平均數(shù) | 中位數(shù) | 眾數(shù) | 方差 |
甲 | 45 | 83 | 86 | 85 | 82 |
乙 | 45 | 83 | 84 | 85 | 133 |
某同學分析上表后得到如下結(jié)論:
①甲、乙兩班學生的平均成績相同;
②乙班優(yōu)秀的人數(shù)少于甲班優(yōu)秀的人數(shù)(競賽得分分為優(yōu)秀);
③甲、乙兩班成績?yōu)?/span>85分的學生人數(shù)比成績?yōu)槠渌档膶W生人數(shù)多;
④乙班成績波動比甲班小.
其中正確結(jié)論有( )
A.1個B.2個C.3個D.4個
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知圓的半徑為,圓心在軸的正半軸,直線被圓截得的弦長分別為,且.
(1)求圓的方程;
(2)問與直線,軸,軸都相切的圓是否存在,若存在請求出所有滿足條件的圓的方程,若不存在也請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在直角坐標系中,曲線的參數(shù)方程為(其中為參數(shù),為的傾斜角,且),曲線的參數(shù)方程為(為參數(shù)),以坐標原點為極點,軸的正半軸為極軸建立極坐標系,曲線的極坐標方程為.
(1)求曲線的普通方程及曲線的直角坐標方程;
(2)已知點,曲線與交于兩點,與交于點,且,求的普通方程.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com