(2011•許昌一模)設點M(x,y)到直線x=4的距離與它到定點(2,0)的距離之比為
2
,并記點M的軌跡為曲線C.
(Ⅰ)求曲線C的方程;
(Ⅱ)過點(2,0)作直線l與曲線C相交于A、B兩點,問C上是否存在點P,使得
OP
=
OA
+
OB
成立?若存在,求出直線l的方程;若不存在,說明理由.
分析:(Ⅰ)由題意利用兩點間的距離公式可得:
|x-4|
(x-2)2+y2
=
2
,整理即可.
(Ⅱ)設A(x1,y1),B(x2,y2),由題意知l的斜率一定不為0,故不妨設l:x=my+2.代入C的方程并整理得到根與系數(shù)的關系;假設存在點P,使
OP
=
OA
+
OB
成立?點P的坐標(x1+x2,y1+y2)滿足橢圓的方程.又A、B在橢圓上,即滿足橢圓的方程.可得x1x2+2y1y2+4=0,代入解得m,即可得到點P的坐標.
解答:解:(Ⅰ)由題意可得:
|x-4|
(x-2)2+y2
=
2
,整理得C:
x2
8
+
y2
4
=1

(Ⅱ)設A(x1,y1),B(x2,y2),由題意知l的斜率一定不為0,故不妨設l:x=my+2.
代入C的方程,并整理得(m2+2)y2+4my-4=0,顯然△>0.
由韋達定理有:y1+y2=-
4m
m2+2
,y1y2=-
4
m2+2
,①
假設存在點P,使
OP
=
OA
+
OB
成立,則其充要條件為:
點P的坐標為(x1+x2,y1+y2),點P在橢圓上,即
(x1+x2)2
8
+
(y1+y2)2
4
=1

整理得
x
2
1
+2
y
2
1
+
x
2
2
+2
y
2
2
+2x1x2+4y1y2=8

又A、B在橢圓上,即
x
2
1
+2
y
2
1
=8
,
x
2
2
+2
y
2
2
=8

故x1x2+2y1y2+4=0        ②
將x1x2=(my1+2)(my2+2)=m2y1y2+2m(y1+y2)+4及①代入②解得m2=2.
y1+y2=
2
-
2
x1+x2=-
4m2
m2+2
+4
=2,即點P(2,±
2
)
.     
所以,存在點P,使得
OP
=
OA
+
OB
,
這時直線l的方程為x-
2
y-2=0
x+
2
y-2=0
點評:本題考查了橢圓的標準方程及其性質、直線與橢圓相交問題轉化為方程聯(lián)立得到根與系數(shù)的關系、向量的運算、兩點間的距離公式等基本知識與基本技能,考查了分類討論的思想方法、推理能力與計算能力..
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

(2011•許昌一模)如圖,在直三棱柱ABC-A1B1C1中,AC=3,BC=4,AB=5,AA1=4,點D是AB的中點,
(1)求證:AC⊥BC1
(2)求證:AC1∥平面CDB1;
(3)求三棱錐C1-CDB1的體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2011•許昌一模)若某幾何體的三視圖(單位:cm)如圖所示,則此幾何體的表面積為( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2011•許昌一模)雙曲線x2-my2=1的虛軸長是實軸長的2倍,則雙曲線的漸近線方程是( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2011•許昌一模)設a>0,已知函數(shù)f(x)=ex(ax2+x+1).
(Ⅰ)討論f(x)的單調性;
(Ⅱ)設g(x)=x2-2bx+4.若對?x1∈[0,1],?x2∈[1,2],使f(x1)≥g(x2).求實數(shù)b的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2011•許昌一模)選修4-5;不等式選講
(Ⅰ)解不等式:|2x-1|-|x-2|<0;
(Ⅱ)設a>0為常數(shù),x,y,z∈R,x+y+z=a,x2+y2+z2=
a22
,求z的取值范圍.

查看答案和解析>>

同步練習冊答案