已知橢圓,點在橢圓上。
(1)求橢圓的離心率;
(2)若橢圓的短半軸長為,直線與橢圓交于A、B,且線段AB以M(1,1)為中點,求直線的方程。

(1);  (2)直線方程為:。

解析試題分析:(1)因為點在橢圓上,所以,即,
,所以。
(2)因為橢圓的短半軸長為,所以,所以橢圓方程為:,
設(shè),則,,兩式相減,得:,因為線段AB以M(1,1)為中點,,所以,即,所以直線方程為:。
考點:本題考查橢圓的簡單性質(zhì);直線與橢圓的綜合應(yīng)用。
點評:利用直線和圓錐曲線的兩個交點,把交點代入圓錐曲線的方程,并作差。求出直線的斜率,然后利用中點求出直線方程。這種方法為點差法。一般情況下,遇到弦中點的問題可以先考慮點差法。 利用點差法可以減少很多的計算,所以在解有關(guān)的問題時用這種方法比較好。點差法適應(yīng)的常見問題:  弦的斜率與弦的中點問題。

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:解答題

(本小題滿分14分)
如圖,已知橢圓,是橢圓的頂點,若橢圓的離心率,且過點.

(Ⅰ)求橢圓的方程;
(Ⅱ)作直線,使得,且與橢圓相交于兩點(異于橢圓的頂點),設(shè)直線和直線的傾斜角分別是,求證:.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(本題滿分12分)
已知橢圓的中心在原點,焦點在坐標軸上,直線與該橢圓相交于,且,,求橢圓的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(本小題滿分10分)
求過點M(0,1)且和拋物線C: 僅有一個公共點的直線的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(本題滿分12分)
在直角坐標系中,點到兩點的距離之和等于,設(shè)點的軌跡為。
(1)求曲線的方程;
(2)過點作兩條互相垂直的直線分別與曲線交于。
①以線段為直徑的圓過能否過坐標原點,若能求出此時的值,若不能說明理由;
②求四邊形面積的取值范圍。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(本小題滿分12分)
已知焦點在軸上的雙曲線C的兩條漸近線過坐標原點,且兩條漸近線與以點為圓心,1為半徑的圓相切,又知C的一個焦點與A關(guān)于直線對稱.
(1)求雙曲線C的方程;
(2)設(shè)直線與雙曲線C的左支交于A,B兩點,另一直線經(jīng)過M(-2,0)及AB的中點,求直線軸上的截距b的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(本小題滿分12分)已知雙曲線的一條漸近線方程是,若雙曲線經(jīng)過點,求此雙曲線的標準方程。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(本小題滿分14分)設(shè)橢圓)經(jīng)過點,其離心率.
(Ⅰ)求橢圓的方程;
(Ⅱ) 直線交橢圓于兩點,且的面積為,求的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(本小題滿分13分)在平面直角坐標系中,已知橢圓)的左焦點為,且點上.
(Ⅰ)求橢圓的方程;
(Ⅱ)已知直線的斜率為2且經(jīng)過橢圓的左焦點.求直線與該橢圓相交的弦長。

查看答案和解析>>

同步練習冊答案