【題目】已知定義在[0,1]上的函數(shù)f(x)滿足:
①f(0)=f(1)=0;
②對所有x,y∈[0,1],且x≠y,有|f(x)﹣f(y)|< |x﹣y|.
若對所有x,y∈[0,1],|f(x)﹣f(y)|<m恒成立,則m的最小值為( )
A.
B.
C.
D.
【答案】B
【解析】解:依題意,定義在[0,1]上的函數(shù)y=f(x)的斜率|k|< ,
依題意可設(shè)k>0,構(gòu)造函數(shù)f(x)= (0<k< ),滿足f(0)=f(1)=0,|f(x)﹣f(y)|< |x﹣y|.
當x∈[0, ],且y∈[0, ]時,|f(x)﹣f(y)|=|kx﹣ky|=k|x﹣y|≤k| ﹣0|=k× < ;
當x∈[0, ],且y∈[ ,1],|f(x)﹣f(y)|=|kx﹣(k﹣ky)|=|k(x+y)﹣k|≤|k(1+ )﹣k|= < ;
當y∈[0, ],且x∈[ ,1]時,同理可得,|f(x)﹣f(y)|< ;
當x∈[ ,1],且y∈[ ,1]時,|f(x)﹣f(y)|=|(k﹣kx)﹣(k﹣ky)|=k|x﹣y|≤k×(1﹣ )= < ;
綜上所述,對所有x,y∈[0,1],|f(x)﹣f(y)|< ,
∵對所有x,y∈[0,1],|f(x)﹣f(y)|<m恒成立,
∴m≥ ,即m的最小值為 .
故選:B.
【考點精析】根據(jù)題目的已知條件,利用絕對值不等式的解法的相關(guān)知識可以得到問題的答案,需要掌握含絕對值不等式的解法:定義法、平方法、同解變形法,其同解定理有;規(guī)律:關(guān)鍵是去掉絕對值的符號.
科目:高中數(shù)學 來源: 題型:
【題目】如圖l,在正方形ABCD中,AB=2,E是AB邊的中點,F(xiàn)是BC邊上的一點,對角線AC分別交DE、DF于M、N兩點.將ADAE,CDCF折起,使A、C重合于A點,構(gòu)成如圖2所示的幾何體.
(I)求證:A′D⊥面A′EF;
(Ⅱ)試探究:在圖1中,F(xiàn)在什么位置時,能使折起后的幾何體中EF∥平面AMN,并給出證明.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】《九章算術(shù)》是中國古代第一部數(shù)學專著,成于公元一世紀左右,系統(tǒng)總結(jié)了戰(zhàn)國、秦、漢時期的數(shù)學成就.其中《方田》一章中記載了計算弧田(弧田就是由圓弧和其所對弦所圍成弓形)的面積所用的經(jīng)驗公式:弧田面積=(弦×矢+矢×矢),公式中“弦”指圓弧所對弦長,“矢”等于半徑長與圓心到弦的距離之差.按照上述經(jīng)驗公式計算所得弧田面積與其實際面積之間存在誤差.現(xiàn)有圓心角為,弦長為的弧田.其實際面積與按照上述經(jīng)驗公式計算出弧田的面積之間的誤差為( )平方米.(其中,)
A. 15 B. 16 C. 17 D. 18
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設(shè) , , 是非零向量,已知命題p:若 =0, =0,則 =0;命題q:若 ∥ , ∥ ,則 ∥ ,則下列命題中真命題是( )
A.p∨q
B.p∧q
C.(¬p)∧(¬q)
D.p∨(¬q)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】將函數(shù)y=3sin(2x+ )的圖象向右平移 個單位長度,所得圖象對應的函數(shù)( )
A.在區(qū)間[ , ]上單調(diào)遞減
B.在區(qū)間[ , ]上單調(diào)遞增
C.在區(qū)間[﹣ , ]上單調(diào)遞減
D.在區(qū)間[﹣ , ]上單調(diào)遞增
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某險種的基本保費為a(單位:元),繼續(xù)購買該險種的投保人稱為續(xù)保人,續(xù)保人本年度的保費與其上年度出險次數(shù)的關(guān)聯(lián)如下:
上年度出險次數(shù) | 0 | 1 | 2 | 3 | 4 | ≥5 |
保費 | 0.85a | a | 1.25a | 1.5a | 1.75a | 2a |
隨機調(diào)查了該險種的200名續(xù)保人在一年內(nèi)的出險情況,得到如下統(tǒng)計表:
出險次數(shù) | 0 | 1 | 2 | 3 | 4 | ≥5 |
頻數(shù) | 60 | 50 | 30 | 30 | 20 | 10 |
(1)記A為事件:“一續(xù)保人本年度的保費不高于基本保費”,求P(A)的估計值;
(2)記B為事件:“一續(xù)保人本年度的保費高于基本保費但不高于基本保費的160%”,求P(B)的估計值;
(3)求續(xù)保人本年度平均保費的估計值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】圓x2+y2=4的切線與x軸正半軸,y軸正半軸圍成一個三角形,當該三角形面積最小時,切點為P(如圖),雙曲線C1: 過點P且離心率為 .
(1)求C1的方程;
(2)若橢圓C2過點P且與C1有相同的焦點,直線l過C2的右焦點且與C2交于A,B兩點,若以線段AB為直徑的圓過點P,求l的方程.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某校高三年級共有學生名,為了解學生某次月考的情況,抽取了部分學生的成績(得分均為整數(shù),滿分為分)進行統(tǒng)計,繪制出如下尚未完成的頻率分布表:
分組 | 頻數(shù) | 頻率 |
(1)補充完整題中的頻率分布表;
(2)若成績在為優(yōu)秀,估計該校高三年級學生在這次月考中,成績優(yōu)秀的學生約為多少人.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,公路AM,AN圍成一塊頂角為α的角形耕地,其中tanα=-2,在該塊土地中P處有一小型建筑,經(jīng)測量,它到公路AM,AN的距離分別為3km,km,現(xiàn)要過點P修建一條直線公路BC,將三條公路圍成的區(qū)域ABC建成一個工業(yè)園,為盡量減少耕地占用,問如何確定B點的位置,使得該工業(yè)園區(qū)的面積最小?并求最小面積.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com