【題目】在平面直角坐標系中,直線交橢圓、兩點,且線段的中點為,直線與橢圓交于、兩點

1)求直線與直線斜率的乘積;

2)若,求直線的方程.

【答案】1;(2.

【解析】

1)設(shè)點,將點、的坐標代入橢圓的方程,并將所得兩式相減,利用點差法可計算出直線與直線斜率的乘積;

2)將直線的方程與橢圓的方程聯(lián)立,消去,列出韋達定理,求出點的坐標,計算出,由(1)可知,直線的方程為,與橢圓的方程聯(lián)立,求出,再由可得出關(guān)于的方程,解出即可得出直線的方程.

1)設(shè),,則,

兩式相減得,

所以,所以;

2)直線的方程為,與橢圓聯(lián)立得,

消去,

所以,

所以,

所以,

直線的方程為:,聯(lián)立,得

,

,

所以,

所以,所以

所以直線的方程為,即.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,圓柱的軸截面是邊長為2的正方形,點是圓弧上的一動點(不與重合),點是圓弧的中點,且點在平面的兩側(cè).

1)證明:平面平面;

2)設(shè)點在平面上的射影為點,點分別是的重心,當三棱錐體積最大時,回答下列問題.

(。┳C明:平面;

(ⅱ)求平面與平面所成二面角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】變換T1是逆時針旋轉(zhuǎn)角的旋轉(zhuǎn)變換,對應(yīng)的變換矩陣是M1;變換T2對應(yīng)的變換矩陣是M2

1)點P(2,1)經(jīng)過變換T1得到點P',求P'的坐標;

2)求曲線yx2先經(jīng)過變換T1,再經(jīng)過變換T2所得曲線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知直線的參數(shù)方程為為參數(shù)),以平面直角坐標系的原點為極點,軸的正半軸為極軸建立極坐標系,橢圓的極坐標方程為.

1)求直線的普通方程(寫成一般式)和橢圓的直角坐標方程(寫成標準方程);

2)若直線與橢圓相交于,兩點,且與軸相交于點,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標系中,橢圓C)的左、右焦點分別為,,直線l交橢圓CA,B兩點,且的周長為8.

1)求橢圓C的方程;

2)若線段的中點為P,直線與橢圓C交于M,N兩點,且,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標系xOy中,以原點O為極點,x軸的正半軸為極軸,建立極坐標系,曲線C的極坐標方程為

1)求曲線C的普通方程;

2)直線l的參數(shù)方程為,(t為參數(shù)),直線lx軸交于點F,與曲線C的交點為A,B,當取最小值時,求直線l的直角坐標方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐中,,,,平面平面,二面角.

1)求證:平面

2)求直線與平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖1,在梯形ABCD中,ADBCABBC2,EAD的中點,OACBE的交點,將△ABE沿BE翻折到圖2中△A1BE的位置得到四棱錐A1BCDE

1)求證:CDA1C

2)若A1C,BE2,求點C到平面A1ED的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù)fx)=|x2|+|x+1|

1)解不等式fx≥4

2)若fx+fy≤6,求x+y的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案