(本題滿分12分)
已知數(shù)列的通項公式為,數(shù)列的前n項和為,且滿足
(1)求的通項公式;
(2)在中是否存在使得中的項,若存在,請寫出滿足題意的一項(不要求寫出所有的項);若不存在,請說明理由.

(1) (2)

解析試題分析:解:(I)當時,………………………………2分
時,
兩式相減得:,即:…………………………………………6分
故{}為首項和公比均為的等比數(shù)列,……………………………8分
(II)設中第m項滿足題意,即,即
所以
 (其它形如的數(shù)均可)……………………12分
考點:等比數(shù)列
點評:解決的關鍵是利用前n項和與其通項公式的關系式,對于n分類討論得到其通項公式,并能通過驗證來說明是否有滿足題意的項,屬于基礎題。

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

已知數(shù)列中,,滿足
(1)求證:數(shù)列為等差數(shù)列;
(2)求數(shù)列的前項和.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

設數(shù)列的前項和為,且方程有一個根為,
(1)證明:數(shù)列是等差數(shù)列;
(2)設方程的另一個根為,數(shù)列的前項和為,求的值;
(3)是否存在不同的正整數(shù),使得,,成等比數(shù)列,若存在,求出滿足條件的,若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

數(shù)列的前項和為,,等差數(shù)列滿足
(1)分別求數(shù)列,的通項公式;      
(2)設,求證

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

觀察下列三角形數(shù)表

記第行的第m個數(shù)為 
(Ⅰ)分別寫出,值的大;
(Ⅱ)歸納出的關系式,并求出關于n的函數(shù)表達式.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知數(shù)列{an}和{bn}滿足:,其中λ為實數(shù),n為正整數(shù).
(Ⅰ)若數(shù)列{an}前三項成等差數(shù)列,求的值;
(Ⅱ)試判斷數(shù)列{bn}是否為等比數(shù)列,并證明你的結(jié)論;
(Ⅲ)設0<a<b,Sn為數(shù)列{bn}的前n項和.是否存在實數(shù)λ,使得對任意正整數(shù)n,都有a<Sn<b?若存在,求λ的取值范圍;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(本小題滿分12分)
已知為等比數(shù)列,;為等差數(shù)列的前n項和,.
(1) 求的通項公式;
(2) 設,求.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(本小題滿分12分)
已知數(shù)列的前項和為,對一切正整數(shù),點都在函數(shù)的圖像上.
(Ⅰ)求數(shù)列的通項公式;
(Ⅱ)設,求數(shù)列的通項公式.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(12分)數(shù)列項和為,
(1)求證:數(shù)列為等比數(shù)列;
(2)設,數(shù)列項和為,求證:

查看答案和解析>>

同步練習冊答案