(本題滿分10分)已知二次函數(shù)的圖象過點(1,13),
且函數(shù)是偶函數(shù).
(1)求的解析式;
(2)已知,,求函數(shù)在[,2]上的最大值和最小值.

(1).
(2)=0.當(dāng),;
當(dāng),;
當(dāng);

解析

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知,,其中是自然常數(shù)).
(Ⅰ)求的單調(diào)性和極小值;
(Ⅱ)求證:上單調(diào)遞增;
(Ⅲ)求證:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)
(1)當(dāng)時,求函數(shù)的最大值和最小值;   
(2)求實數(shù)的取值范圍,使在區(qū)間上是單調(diào)函數(shù)。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本題滿分12分)
某公司生產(chǎn)一種電了儀器的固定成本為20000元,每生產(chǎn)一臺儀器需增加投入100元,已知總收益滿足函數(shù):
  ,其中是儀器的月產(chǎn)量。
⑴將利潤表示為月產(chǎn)量的函數(shù)。
⑵當(dāng)月產(chǎn)量為何值時,公司所獲利潤最大?最大利潤為多少元?(總收益―總成本=利潤)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本題滿分12分)已知二次函數(shù)滿足條件
(1)求;(2)求在區(qū)間上的最大值和最小值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)定義域為,若對于任意的,,都有,且>0時,有>0.
⑴證明: 為奇函數(shù);
⑵證明: 上為單調(diào)遞增函數(shù);
⑶設(shè)=1,若<,對所有恒成立,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題14分)某民營企業(yè)生產(chǎn)A,B兩種產(chǎn)品,根據(jù)市場調(diào)查和預(yù)測,A產(chǎn)品的利潤與投資成正比,其關(guān)系如圖1,B產(chǎn)品的利潤與投資的算術(shù)平方根成正比,其關(guān)系如圖2(注:利潤與投資單位是萬元)
(1)分別將A,B兩種產(chǎn)品的利潤表示為投資的函數(shù),并寫出它們的函數(shù)關(guān)系式.
(2)該企業(yè)已籌集到10萬元,并全部投入A,B兩種產(chǎn)品的生產(chǎn),問:怎樣分配這
10萬元投資,才能是企業(yè)獲得最大利潤,其最大利潤約為多少萬元.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

某地有三家工廠,分別位于矩形ABCD 的頂點A,B 及CD的中點P 處,已知AB="20km,CB" ="10km" ,為了處理三家工廠的污水,現(xiàn)要在矩形ABCD 的區(qū)域中(含邊界),且與A,B等距離的一點O 處建造一個污水處理廠,并鋪設(shè)排污管道AO,BO,OP ,設(shè)排污管道的總長為km.
(Ⅰ)設(shè)∠BAO=(rad),將表示成的函數(shù)關(guān)系式;
(Ⅱ)請用(Ⅰ)中的函數(shù)關(guān)系式,確定污水處理廠的位置,使三條排污管道總長度最短.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分12分)
某出版社新出版一本高考復(fù)習(xí)用書,該書的成本為元一本,經(jīng)銷過程中每本書需付給代理商的勞務(wù)費,經(jīng)出版社研究決定,新書投放市場后定價為元一本,,預(yù)計一年的銷售量為萬本.
(Ⅰ)求該出版社一年的利潤(萬元)與每本書的定價的函數(shù)關(guān)系式;
(Ⅱ)若時,當(dāng)每本書的定價為多少元時,該出版社一年利潤最大,并求出的最大值.

查看答案和解析>>

同步練習(xí)冊答案