已知函數(shù).
⑴ 求函數(shù)的單調(diào)區(qū)間;
⑵ 如果對(duì)于任意的,總成立,求實(shí)數(shù)的取值范圍;
⑶ 是否存在正實(shí)數(shù),使得:當(dāng)時(shí),不等式恒成立?請(qǐng)給出結(jié)論并說明理由.
(1).;(2)⑶詳見解析.

試題分析:(1)利用求導(dǎo)的基本思路求解,注意導(dǎo)數(shù)的四則運(yùn)算;(2)利用轉(zhuǎn)化思想將問題轉(zhuǎn)化為總成立,只需時(shí).借助求導(dǎo),研究的性質(zhì),通過對(duì)參數(shù)k的討論和單調(diào)性的分析探求實(shí)數(shù)的取值范圍;⑶通過構(gòu)造函數(shù)和等價(jià)轉(zhuǎn)化思想,將問題轉(zhuǎn)化為,要使上恒成立,只需.然后利用求導(dǎo)研究函數(shù)的最大值,進(jìn)而證明結(jié)論.
試題解析::(1) 由于,
所以.       (2分)
當(dāng),即時(shí),;
當(dāng),即時(shí),.
所以的單調(diào)遞增區(qū)間為,
單調(diào)遞減區(qū)間為.                         (4分)
(2) 令,要使總成立,只需時(shí).
對(duì)求導(dǎo)得,
,則,()
所以上為增函數(shù),所以.                       (6分)
對(duì)分類討論:
① 當(dāng)時(shí),恒成立,所以上為增函數(shù),所以,即恒成立;
② 當(dāng)時(shí),在上有實(shí)根,因?yàn)?img src="http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824021241001484.png" style="vertical-align:middle;" />在上為增函數(shù),所以當(dāng)時(shí),,所以,不符合題意;
③ 當(dāng)時(shí),恒成立,所以上為減函數(shù),則,不符合題意.
綜合①②③可得,所求的實(shí)數(shù)的取值范圍是.                    (9分)
(3) 存在正實(shí)數(shù)使得當(dāng)時(shí),不等式恒成立.
理由如下:令,要使上恒成立,只需.                                                 (10分)
因?yàn)?img src="http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824021241484999.png" style="vertical-align:middle;" />,且,,所以存在正實(shí)數(shù),使得,
當(dāng)時(shí),,上單調(diào)遞減,即當(dāng)時(shí),,所以只需均滿足:當(dāng)時(shí),恒成立.                 (12分)
注:因?yàn)?img src="http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824021241687722.png" style="vertical-align:middle;" />,,所以
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知函數(shù)的圖象如下所示:

給出下列四個(gè)命題:
①方程有且僅有6個(gè)根   ②方程有且僅有3個(gè)根
③方程有且僅有5個(gè)根   ④方程有且僅有4個(gè)根
其中正確的命題是        .(將所有正確的命題序號(hào)填在橫線上).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

函數(shù)為自然對(duì)數(shù)的底數(shù))的值域是實(shí)數(shù)集R,則實(shí)數(shù)a的取值范圍是(   )
A.B.C.D.[0,1]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

若過點(diǎn)的直線與曲線都相切,則的值為(    )
A.2或B.3或C.2D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知函數(shù)的導(dǎo)函數(shù)為(其中為自然對(duì)數(shù)的底數(shù),為實(shí)數(shù)),且上不是單調(diào)函數(shù),則實(shí)數(shù)的取值范圍是(     )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

設(shè)曲線在點(diǎn)處的切線與直線垂直,則等于 (   )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知函數(shù)處有極大值,則=(  )
A.6B.C.2或6D.-2或6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

與直線平行的拋物線的切線方程是         

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

函數(shù)的單調(diào)遞增區(qū)是(   )
A.B.
C.D.

查看答案和解析>>

同步練習(xí)冊(cè)答案