【題目】已知函數(shù),,其中.

(1)當(dāng)時(shí),求函數(shù)的值域

(2)當(dāng)時(shí),設(shè),若給定,對(duì)于兩個(gè)大于1的正數(shù),存在滿足:,使恒成立,求實(shí)數(shù)的取值范圍.

(3)當(dāng)時(shí),設(shè),若的最小值為,求實(shí)數(shù)的值.

【答案】(1);(2) ;(3) .

【解析】

(1)當(dāng)a=0時(shí),g(x)=(2x﹣2)2﹣4,即可求函數(shù)g(x)的值域;(2)m分類討論,利用不等式得出的范圍,再利用f(x)的單調(diào)性得出大小關(guān)系. (3)分類討論,利用二次函數(shù)的配方法,結(jié)合h(x)的最小值為﹣ ,求實(shí)數(shù)a的值.

解:(1)當(dāng)時(shí), ,因?yàn)?/span>,所以,

所以的值域?yàn)?/span>

(2)由可得在區(qū)間上單調(diào)遞增   

①當(dāng)時(shí),有,

,得,同理,  

f(x)的單調(diào)性知: 、

從而有,符合題設(shè).

②當(dāng)時(shí),,

,

f(x)的單調(diào)性知 ,

,與題設(shè)不符

③當(dāng)時(shí),同理可得

,與題設(shè)不符.

∴綜合①、②、③得

(3)因?yàn)?/span>當(dāng)時(shí),

, ,則 ,

當(dāng)時(shí),即,

當(dāng)時(shí), ,即,

因?yàn)?/span>,所以, .

, ,此時(shí),

,即,此時(shí),

所以實(shí)數(shù).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】對(duì)于三次函數(shù)f(x)=ax3+bx2+cx+d(a≠0),給出定義:設(shè)f′(x)是函數(shù)y=f(x)的導(dǎo)數(shù),f″(x)是f′(x)的導(dǎo)數(shù),若方程f″(x)=0有實(shí)數(shù)解x0 , 則稱點(diǎn)(x0 , f(x0))為函數(shù)y=f(x)的“拐點(diǎn)”.經(jīng)過探究發(fā)現(xiàn):任何一個(gè)三次函數(shù)都有“拐點(diǎn)”;任何一個(gè)三次函數(shù)都有對(duì)稱中心,且“拐點(diǎn)”就是對(duì)稱中心.設(shè)函數(shù)g(x)=2x3﹣3x2+ ,則g( )+g( )+…+g( )=(
A.100
B.50
C.
D.0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的左、右焦點(diǎn)為,直線過點(diǎn)且垂直于橢圓的長(zhǎng)軸,動(dòng)直線垂直于點(diǎn),線段的垂直平分線與的交點(diǎn)的軌跡為曲線,若,且是曲線上不同的點(diǎn),滿足,則的取值范圍為( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某市8所中學(xué)生參加比賽的得分用莖葉圖表示(如圖)其中莖為十位數(shù),葉為個(gè)位數(shù),則這組數(shù)據(jù)的平均數(shù)和方差分別是(

A.91 5.5
B.91 5
C.92 5.5
D.92 5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】一般地,對(duì)于直線及直線外一點(diǎn),我們有點(diǎn)到直線的距離公式為:

(1)證明上述點(diǎn)到直線的距離公式

(2)設(shè)直線,試用上述公式求坐標(biāo)原點(diǎn)到直線距離的最大值及取最大值時(shí)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,CD是∠ACB的平分線,△ACD的外接圓交BC于點(diǎn)E,AB=2AC,

(1)求證:BE=2AD;
(2)求函數(shù)AC=1,BC=2時(shí),求AD的長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知三棱錐的四個(gè)頂點(diǎn)均在半徑為2的球面上,且滿足,,則三棱錐的側(cè)面積的最大值為(

A. 2 B. 4 C. 8 D. 16

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在直角坐標(biāo)系xOy中,以原點(diǎn)O為極點(diǎn),x軸正半軸為極軸,建立極坐標(biāo)系,已知曲線C的參數(shù)方程是 (θ為參數(shù)),曲線C與l的交點(diǎn)的極坐標(biāo)為(2, )和(2, ),
(1)求直線l的普通方程;
(2)設(shè)P點(diǎn)為曲線C上的任意一點(diǎn),求P點(diǎn)到直線l的距離的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某校學(xué)生會(huì)為了了解學(xué)生對(duì)于“趣味運(yùn)動(dòng)會(huì)”的滿意程度,從高一、高二兩個(gè)年級(jí)分別隨機(jī)調(diào)查了20個(gè)學(xué)生,得到學(xué)生對(duì)“趣味運(yùn)動(dòng)會(huì)”所設(shè)項(xiàng)目的滿意度評(píng)分如下:
高一:62 7381 92 9585 74 6453 76
7886 95 6697 78 8882 76 89
高二:73 8362 51 9146 53 7364 82
9348 65 8174 56 5476 65 79
(1)根據(jù)兩組數(shù)據(jù)完成兩個(gè)年級(jí)滿意度評(píng)分的莖葉圖,并通過莖葉圖比較兩個(gè)年級(jí)滿意度評(píng)分的平均值及離散程度(不要求計(jì)算出具體值,給出結(jié)論即可);

高一

高二

4

3

5

6

4

2

6

6

8

8

6

4

3

7

9

2

8

6

5

1

8

7

5

5

2

9


(2)根據(jù)學(xué)生滿意度評(píng)分,將學(xué)生的滿意度從低到高分為三個(gè)等級(jí):

滿意度評(píng)分

低于70分

70分到89分

不低于90分

滿意度等級(jí)

不滿意

滿意

非常滿意

假設(shè)兩個(gè)年級(jí)的評(píng)價(jià)結(jié)果相互獨(dú)立.根據(jù)所給數(shù)據(jù),以事件發(fā)生的頻率作為相應(yīng)事件發(fā)生的概率.隨機(jī)調(diào)查高一、高二各一名學(xué)生,記事件A:“高一、高二學(xué)生都非常滿意”,事件B:“高一的滿意度等級(jí)高于高二的滿意度等級(jí)”.分別求事件A、事件B的概率.

查看答案和解析>>

同步練習(xí)冊(cè)答案