【題目】如圖,在三棱錐中,,.

(Ⅰ)求證: (Ⅱ)求二面角的大小.

【答案】(Ⅰ)詳見解析(Ⅱ)

【解析】

試題分析:(Ⅰ)連接PD,由等腰三角形三線合一,可得PDAB,由DEBC,BCAB可得DEAB,進而由線面垂直的判定定理得到AB平面PDE,再由線面垂直的性質(zhì)得到ABPE;(Ⅱ)以D為原點建立空間直角坐標系,分別求出平面PBE的法向量和平面PAB的法向量,代入向量夾角公式,可得二面角A-PB-E的大小

試題解析:(Ⅰ)連結 , ………分,

,即

,

………

(Ⅱ),

,………

如圖,以D為原點建立空間直角坐標系,

,.

設平面PBE的法向量,, .………[來

DE⊥平面PAB,平面PAB的法向量為.………

設二面角的A-PB-E大小為,由圖知,,,

二面角的A-PB-E的大小為.……12分

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知直線與橢圓相交于兩點.

(1)若橢圓的離心率為,焦距為,求線段的長;

(2)若向量與向量互相垂直其中為坐標原點,當橢圓的離心率時,求橢圓長軸長的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,已知動直線過點,且與圓交于、兩點.

(1)若直線的斜率為,求的面積;

(2)若直線的斜率為,點是圓上任意一點,求的取值范圍;

(3)是否存在一個定點(不同于點),對于任意不與軸重合的直線,都有平分,若存在,求出定點的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在四棱錐中,四邊形為直角梯形,平面 ,的中點,

1求證:平面 ;

2,求點到平面 的距離

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,點E為正方形ABCDCD上異于點CD的動點,將ADE沿AE翻折成SAE,使得平面SAE平面ABCE,則下列三個說法中正確的個數(shù)是

存在點E使得直線SA平面SBC

平面SBC內(nèi)存在直線與SA平行

平面ABCE內(nèi)存在直線與平面SAE平行

A.0 B.1 C.2 D.3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】中,邊,所在直線的方程分別為,,已知邊上一點.

(1)若邊上的高,求直線的方程;

(2)若邊的中線,求的面積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某校高三年級在高校自主招生期間,把學生的平時成績按百分制折算并排序,選出前300名學生,并對這300名學生按成績分組,第一組,第二組,第三組,第四組,第五組,如圖為頻率分布直方圖的一部分,其中第五組、第一組、第四組、第二組、第三組的人數(shù)依次成等差數(shù)列

I請在圖中補全頻率直方圖;

II大學決定在成績高的第4,5組中用分層抽樣的方法抽取6名學生,并且分成2組,每組3人進行面試,求95分包括95分以上的同學被分在同一個小組的概率

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某校從高年級學生中隨機抽取50名學生,將他們的期中考試數(shù)學成績(滿分100分,成績均為不低于40分的整數(shù))分成六段:[40,50),[50,60),…,[90,100],得到如圖所示的頻率分布直方圖.

(1)若該校高年級共有學生1000人,試估計成績不低于60分的人數(shù);

(2)該校高二年級全體學生期中考試成績的眾數(shù)、中位數(shù)和平均數(shù)的估計值

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】現(xiàn)有編號分別為1,2,3,4,5的五道不同的政治題和編號分別為6,7,8,9的四道不同的歷史題.甲同學從這九道題中一次性隨機抽取兩道題,每道題被抽到的概率是相等的,用符號(x,y)表示事件抽到的兩道題的編號分別為x,y,且x<y..

(1)問有多少個基本事件,并列舉出來;

(2)求甲同學所抽取的兩道題的編號之和小于17但不小于11的概率.

查看答案和解析>>

同步練習冊答案