【題目】中,邊所在直線的方程分別為,,已知邊上一點(diǎn).

(1)若邊上的高,求直線的方程;

(2)若邊的中線,求的面積.

【答案】(1)(2)6

【解析】試題分析:

(1)利用題意首先求得BC的斜率,然后由點(diǎn)斜式可得直線的方程為;

(2)由題意可得三角形的高為,結(jié)合幾何關(guān)系可得的面積為6.

試題解析:

(1)由解得,即,分

,所以,

因?yàn)?/span>邊上的高,所以

邊上一點(diǎn),所以 ,

所以直線的方程為

(2)法一:設(shè)點(diǎn)的坐標(biāo)為,由的中點(diǎn),得點(diǎn)的坐標(biāo)為,

又點(diǎn)與點(diǎn)分別在直線上,

所以,解得,

所以點(diǎn)的坐標(biāo)為

由(1)得,又,

所以直線的方程為,

所以點(diǎn)到直線的距離,

,

所以,

的中點(diǎn)

所以.

法二:(上同法一)

點(diǎn)的坐標(biāo)為,

上一點(diǎn),

所以直線的方程為

由(1)知,所以點(diǎn)到直線的距離

,

的坐標(biāo)為,

所以,

所以

法三:若直線的斜率不存在,即的方程為,

解得,

的坐標(biāo)為,同理可得的坐標(biāo)為,

, 不是的中點(diǎn),所以直線的斜率存在.

設(shè)直線的方程為

解得,即的坐標(biāo)為 同理可得的坐標(biāo)為,的中點(diǎn)

所以解得,

所以直線的方程為,即為

(下同法二)

法四:求正弦值即,長(zhǎng)用面積公式(略).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列{an}共有2k項(xiàng)(),數(shù)列{an}的前n項(xiàng)和為Sn,滿足:a1 = 2,an1 = (p 1) Sn 2(n = 1,2,…, 2k1),其中常數(shù)p > 1.

(1)求證:數(shù)列{an}是等比數(shù)列;

(2)若,數(shù)列{bn }滿足n = 1,2,…, 2k),求數(shù)列

{bn }的通項(xiàng)公式;

(3)對(duì)于(2)中數(shù)列{bn },求和Tn =

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù).

1)當(dāng)為自然對(duì)數(shù)的底數(shù))時(shí),求的最小值;

2)討論函數(shù)零點(diǎn)的個(gè)數(shù);

3)若對(duì)任意恒成立,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在2016年6月英國(guó)脫歐公投前夕,為了統(tǒng)計(jì)該國(guó)公民是否有留歐意愿,該國(guó)某中學(xué)數(shù)學(xué)興趣小組隨機(jī)抽查了50名不同年齡層次的公民,調(diào)查統(tǒng)計(jì)他們是贊成留歐還是反對(duì)留歐現(xiàn)已得知50人中贊成留歐的占60%,統(tǒng)計(jì)情況如下表:

年齡層次

贊成留歐

反對(duì)留歐

合計(jì)

18歲19歲

6

50歲及50歲以上

10

合計(jì)

50

1請(qǐng)補(bǔ)充完整上述列聯(lián)表;

2請(qǐng)問是否有975%的把握認(rèn)為贊成留歐與年齡層次有關(guān)?請(qǐng)說明理由

參考公式與數(shù)據(jù):,其中

015

010

005

0025

0010

0005

0001

2072

2706

3841

5024

6635

7879

10828

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在三棱錐中,,.

(Ⅰ)求證: (Ⅱ)求二面角的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),,三個(gè)函數(shù)的定義域均為集合

1,試判斷集合的關(guān)系,并說明理由;

2,是否存在,使得對(duì)任意的實(shí)數(shù),函數(shù)有且僅有兩個(gè)零點(diǎn)?若存在,求出滿足條件的最小正整數(shù);若不存在,說明理由.(以下數(shù)據(jù)供參考:,

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的左、右焦點(diǎn)分別為,橢圓上的點(diǎn)滿足,且的面積為

1求橢圓的方程;

2設(shè)橢圓的左、右頂點(diǎn)分別為,過點(diǎn)的動(dòng)直線與橢圓相交于、兩點(diǎn),直線與直線的交點(diǎn)為,證明:點(diǎn)總在直線

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】口袋中裝有質(zhì)地大小完全相同的5個(gè)球,編號(hào)分別為1,2,3,4,5,甲、乙兩人玩一種游戲:甲先摸一個(gè)球,記下編號(hào),放回后乙再摸一個(gè)球,記下編號(hào)如果兩個(gè)編號(hào)的和為偶數(shù)就算甲勝,否則算乙勝

1求甲勝且編號(hào)的和為6的事件發(fā)生的概率;

2這種游戲規(guī)則公平嗎?說明理由

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),.

函數(shù)的圖象與的圖象無公共點(diǎn),求實(shí)數(shù)的取值范圍;

是否存在實(shí)數(shù),使得對(duì)任意的,都有函數(shù)的圖象在的圖象的下方?若存在,請(qǐng)求出整數(shù)的最大值;若不存在,請(qǐng)說理由.

(參考數(shù)據(jù):,).

查看答案和解析>>

同步練習(xí)冊(cè)答案