【題目】為迎接“雙十一”活動(dòng),某網(wǎng)店需要根據(jù)實(shí)際情況確定經(jīng)營(yíng)策略.
(1)采購(gòu)員計(jì)劃分兩次購(gòu)買一種原料,第一次購(gòu)買時(shí)價(jià)格為a元/個(gè),第二次購(gòu)買時(shí)價(jià)格為b元/個(gè)(其中a≠b).該采購(gòu)員有兩種方案:方案甲:每次購(gòu)買m個(gè);方案乙:每次購(gòu)買n元.請(qǐng)確定按照哪種方案購(gòu)買原料平均價(jià)格較。
(2)“雙十一”活動(dòng)后,網(wǎng)店計(jì)劃對(duì)原價(jià)為100元的商品兩次提價(jià),現(xiàn)有兩種方案:方案丙:第一次提價(jià)p,第二次提價(jià)q;方案丁:第一次提價(jià) ,第二次提價(jià) ,(其中p≠q)請(qǐng)確定哪種方案提價(jià)后價(jià)格較高.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】命題p:x∈R,ax2+ax﹣1<0,命題q: +1<0.
(1)若“p或q”為假命題,求實(shí)數(shù)a的取值范圍;
(2)若“非q”是“α∈[m,m+1]”的必要不充分條件,求實(shí)數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù)y= 的圖象上存在兩點(diǎn)P,Q,使得△POQ是以O(shè)為直角頂點(diǎn)的直角三角形(其中O為坐標(biāo)原點(diǎn)),且斜邊的中點(diǎn)恰好在y軸上,則實(shí)數(shù)a的取值范圍是 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=x2+2ax+2,x∈[﹣5,5].
(1)當(dāng)a=﹣1時(shí),求函數(shù)f(x)的單調(diào)遞增區(qū)間;
(2)求實(shí)數(shù)a的取值范圍,使y=f(x)在區(qū)間[﹣5,5]上是單調(diào)函數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓F1:(x+1)2+y2=1,圓F2:(x﹣1)2+y2=25,若動(dòng)圓C與圓F1外切,且與圓F2內(nèi)切,求動(dòng)圓圓心C的軌跡方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】【2017廣東佛山二!已知橢圓:()的焦距為4,左、右焦點(diǎn)分別為、,且與拋物線:的交點(diǎn)所在的直線經(jīng)過.
(Ⅰ)求橢圓的方程;
(Ⅱ)分別過、作平行直線、,若直線與交于,兩點(diǎn),與拋物線無公共點(diǎn),直線與交于,兩點(diǎn),其中點(diǎn),在軸上方,求四邊形的面積的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】數(shù)列{an}的前n項(xiàng)和是Sn , a1=5,且an=Sn﹣1(n=2,3,4,…).
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)求證: < .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】【2017廣東佛山二!設(shè)函數(shù),其中,是自然對(duì)數(shù)的底數(shù).
(Ⅰ)若是上的增函數(shù),求的取值范圍;
(Ⅱ)若,證明:.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com