【題目】已知橢圓的離心率為,且過點(diǎn).

1)求橢圓C的方程;

2)若點(diǎn)A、B為橢圓C的左右頂點(diǎn),直線x軸交于點(diǎn)D,點(diǎn)P是橢圓C上異于A、B的動點(diǎn),直線AP、BP分別交直線E、F兩點(diǎn),當(dāng)點(diǎn)P在橢圓C上運(yùn)動時,是否為定值?若是,請求出該定值;若不是,請說明理由.

【答案】1;(2)為定值1

【解析】

(1) 由題意可知,,結(jié)合,可求出橢圓方程.

(2) 設(shè),則直線AP的方程為,求出,同理得出,將點(diǎn)在橢圓上這個條件代入,可得到答案.

1)由題意可知

又因?yàn)?/span>,解得

所以橢圓C的方程為;

2為定值1.

由題意可得:,設(shè),由題意可得:,

所以直線AP的方程為,令,則,

;

同理:直線BP的方程為,令,則,

所以

,即,

代入上式得,

所以為定值1.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某電子公司新開發(fā)一電子產(chǎn)品,該電子產(chǎn)品的一個系統(tǒng)G有3個電子元件組成,各個電子元件能否正常工作的概率均為,且每個電子元件能否正常工作相互獨(dú)立.若系統(tǒng)C中有超過一半的電子元件正常工作,則G可以正常工作,否則就需要維修,且維修所需費(fèi)用為500元.

(1)求系統(tǒng)不需要維修的概率;

(2)該電子產(chǎn)品共由3個系統(tǒng)G組成,設(shè)E為電子產(chǎn)品需要維修的系統(tǒng)所需的費(fèi)用,求的分布列與期望;

(3)為提高G系統(tǒng)正常工作概率,在系統(tǒng)內(nèi)增加兩個功能完全一樣的其他品牌的電子元件,每個新元件正常工作的概率均為,且新增元件后有超過一半的電子元件正常工作,則C可以正常工作,問:滿足什么條件時,可以提高整個G系統(tǒng)的正常工作概率?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù),().

1)若曲線在點(diǎn)處的切線方程為,求實(shí)數(shù)am的值;

2)關(guān)于x的方程能否有三個不同的實(shí)根?證明你的結(jié)論;

3)若對任意恒成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】若無窮數(shù)列滿足:,且對任意,(sk,l)都有,則稱數(shù)列為“T”數(shù)列.

1)證明:正項(xiàng)無窮等差數(shù)列是“T”數(shù)列;

2)記正項(xiàng)等比數(shù)列的前n項(xiàng)之和為,若數(shù)列是“T”數(shù)列,求數(shù)列公比的取值范圍;

3)若數(shù)列是“T”數(shù)列,且數(shù)列的前n項(xiàng)之和滿足,求證:數(shù)列是等差數(shù)列.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)fx=aex,gx=lnx-lna,其中a為常數(shù),且曲線y=fx)在其與y軸的交點(diǎn)處的切線記為l1,曲線y=gx)在其與x軸的交點(diǎn)處的切線記為l2,且l1l2

1)求l1,l2之間的距離;

2)若存在x使不等式成立,求實(shí)數(shù)m的取值范圍;

3)對于函數(shù)fx)和gx)的公共定義域中的任意實(shí)數(shù)x0,稱|fx0-gx0|的值為兩函數(shù)在x0處的偏差.求證:函數(shù)fx)和gx)在其公共定義域內(nèi)的所有偏差都大于2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某大型公司為了切實(shí)保障員工的健康安全,貫徹好衛(wèi)生防疫工作的相關(guān)要求,決定在全公司范圍內(nèi)舉行一次普查,為此需要抽驗(yàn)1000人的血樣進(jìn)行化驗(yàn),由于人數(shù)較多,檢疫部門制定了下列兩種可供選擇的方案.方案①:將每個人的血分別化驗(yàn),這時需要驗(yàn)1000.方案②:按個人一組進(jìn)行隨機(jī)分組,把從每組個人抽來的血混合在一起進(jìn)行檢驗(yàn),如果每個人的血均為陰性,則驗(yàn)出的結(jié)果呈陰性,這個人的血只需檢驗(yàn)一次(這時認(rèn)為每個人的血化驗(yàn));否則,若呈陽性,則需對這個人的血樣再分別進(jìn)行一次化驗(yàn),這樣,該組個人的血總共需要化驗(yàn).假設(shè)此次普查中每個人的血樣化驗(yàn)呈陽性的概率為,且這些人之間的試驗(yàn)反應(yīng)相互獨(dú)立.

1)設(shè)方案②中,某組個人的每個人的血化驗(yàn)次數(shù)為,求的分布列;

2)設(shè),試比較方案②中,分別取2,3,4時,各需化驗(yàn)的平均總次數(shù);并指出在這三種分組情況下,相比方案①,化驗(yàn)次數(shù)最多可以平均減少多少次?(最后結(jié)果四舍五入保留整數(shù))

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在直三棱柱中,,底面三邊長分別為3,57,是上底面所在平面內(nèi)的動點(diǎn),若三棱錐的外接球表面積為,則滿足題意的動點(diǎn)的軌跡對應(yīng)圖形的面積為________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】20名學(xué)生某次數(shù)學(xué)考試成績(單位:分)的頻率分布直方圖如下:

(1)求頻率直方圖中a的值;

(2)分別求出成績落在[50,60)與[60,70)中的學(xué)生人數(shù);

(3)從成績在[50,70)的學(xué)生中人選2人,求這2人的成績都在[60,70)中的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系xOy中,橢圓的離心率為,過橢圓右焦點(diǎn)作兩條互相垂直的弦.當(dāng)直線斜率為0時,

1)求橢圓的方程;

2)求的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案