精英家教網 > 高中數學 > 題目詳情

【題目】據市場分析,某綠色蔬菜加工點月產量為10噸至25噸(包含10噸和25噸),月生產總成本(萬元)可以看成月產量(噸)的二次函數.當月產量為10噸時,月總成本為20萬元;當月產量為15噸時,月總成本最低為17.5萬元.

1)寫出月總成本(萬元)關于月產量(噸)的函數解析式;

2)若,當月產量為多少噸時,每噸平均成本最低?最低平均成本是多少萬元?

【答案】1

2)當月產量為噸時,每噸平均成本最低,最低成本為萬元.

【解析】

1)設出函數解析式,代入,可得函數解析式.

2)求出每噸平均成本,利用基本不等式可求最值.

1)由題意,設,

代入上式得,解得

.

2

當且僅當,即時等號成立,

故當月產量為噸時,每噸平均成本最低,最低成本為萬元.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】已知直線l4x3y100,半徑為2的圓Cl相切,圓心Cx軸上且在直線l的右上方.

(1)求圓C的方程;

(2)過點M(10)的直線與圓C交于A,B兩點(Ax軸上方),問在x軸正半軸上是否存在定點N,使得x軸平分∠ANB?若存在,請求出點N的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某公司計劃購買2臺機器,該種機器使用三年后即被淘汰.機器有一易損零件,在購進機器時,可以額外購買這種零件作為備件,每個200.在機器使用期間,如果備件不足再購買,則每個500.現(xiàn)需決策在購買機器時應同時購買幾個易損零件,為此搜集并整理了100臺這種機器在三年使用期內更換的易損零件數,得下面柱狀圖:

以這100臺機器更換的易損零件數的頻率代替1臺機器更換的易損零件數發(fā)生的概率,記表示2臺機器三年內共需更換的易損零件數,表示購買2臺機器的同時購買的易損零件數.

)求的分布列;

)若要求,確定的最小值;

)以購買易損零件所需費用的期望值為決策依據,在之中選其一,應選用哪個?

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某經銷商計劃銷售一款新型的電子產品,經市場調研發(fā)現(xiàn)以下規(guī)律:當每臺電子產品的利潤為x(單位:元,x>0)時銷售量q(x)(單位:百臺)與x的關系滿足:若x不超過25,q(x)= ;若x大于或等于225,則銷售量為零;當25≤x≤225q(x)=a-b(a,b為實常數).

(1) 求函數q(x)的表達式;

(2) 當x為多少時,總利潤(單位:元)取得最大值,并求出該最大值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】一只藥用昆蟲的產卵數y與一定范圍內的溫度x有關, 現(xiàn)收集了該種藥用昆蟲的6組觀測數據如下表:

溫度x/C

21

23

24

27

29

32

產卵數y/

6

11

20

27

57

77

經計算得: , ,

,線性回歸模型的殘差平方和e8.0605≈3167,其中xi, yi分別為觀測數據中的溫度和產卵數,i=1, 2, 3, 4, 5, 6.

()若用線性回歸模型,求y關于x的回歸方程=x+(精確到0.1);

()若用非線性回歸模型求得y關于x的回歸方程為=0.06e0.2303x,且相關指數R2=0.9522.

( i )試與()中的回歸模型相比,用R2說明哪種模型的擬合效果更好.

( ii )用擬合效果好的模型預測溫度為35C時該種藥用昆蟲的產卵數(結果取整數).

附:一組數據(x1,y1), (x2,y2), ...,(xn,yn ), 其回歸直線=x+的斜率和截距的最小二乘估計為

=;相關指數R2=

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】全國糖酒商品交易會將在四川舉辦.展館附近一家川菜特色餐廳為了研究參會人數與本店所需原材料數量的關系,在交易會前查閱了最近5次交易會的參會人數(萬人)與餐廳所用原材料數量(袋),得到如下數據:

舉辦次數

第一次

第二次

第三次

第四次

第五次

參會人數(萬人)

11

9

8

10

12

原材料(袋)

28

23

20

25

29

(Ⅰ)請根據所給五組數據,求出關于的線性回歸方程;

(Ⅱ)若該店現(xiàn)有原材料12袋,據悉本次交易會大約有13萬人參加,為了保證原材料能夠滿足需要,則該店應至少再補充原材料多少袋?

(參考公式:

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】春節(jié)過后,某市教育局從全市高中生中抽去了100人,調查了他們的壓歲錢收入情況,按照金額(單位:百元)分成了以下幾組:,,,.統(tǒng)計結果如下表所示:

該市高中生壓歲錢收入可以認為服從正態(tài)分布,用樣本平均數(每組數據取區(qū)間的中點值)作為的估計值.

(1)求樣本平均數;

(2)求;

(3)某文化公司贊助了市教育局的這次社會調查活動,并針對該市的高中生制定了贈送“讀書卡”的活動,贈送方式為:壓歲錢低于的獲贈兩次讀書卡,壓歲錢不低于的獲贈一次讀書卡.已知每次贈送的讀書卡張數及對應的概率如下表所示:

現(xiàn)從該市高中生中隨機抽取一人,記(單位:張)為該名高中生獲贈的讀書卡的張數,求的分布列及數學期望.

參考數據:若,則,.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】下面幾種推理中是演繹推理的為( )

A. 由金、銀、銅、鐵可導電,猜想:金屬都可導電

B. 猜想數列的通項公式為

C. 半徑為的圓的面積,則單位圓的面積

D. 由平面直角坐標系中圓的方程為,推測空間直角坐標系中球的方程為

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知橢圓的離心率為,橢圓的短軸端點與雙曲線的焦點重合,過點的直線與橢圓相交于、兩點.

(1)求橢圓的方程;

(2)若以為直徑的圓過坐標原點,求的值.

查看答案和解析>>

同步練習冊答案