【題目】已知圓C方程為,橢圓中心在原點,焦點在x軸上.

1)證明圓C恒過一定點M,并求此定點M的坐標;

2)判斷直線與圓C的位置關(guān)系,并證明你的結(jié)論;

3)當時,圓C與橢圓的左準線相切,且橢圓過(1)中的點M,求此時橢圓方程;在x軸上是否存在兩定點A,B使得對橢圓上任意一點Q(異于長軸端點),直線,的斜率之積為定值?若存在,求出AB坐標;若不存在,請說明理由.

【答案】1)證明見解析;定點2)直線與圓C相切;證明見解析;(3)存在;,或者

【解析】

1)根據(jù)題意得到,解得答案.

2)將圓化為標準形式,計算圓心到直線的距離與半徑作比較得到答案.

3)根據(jù)準線和橢圓過點計算得到,得到橢圓方程,設定點,,計算為定值,得到,計算得到答案.

1)圓C的方程可化為:,

,解得,所以圓C過定點.

2)圓C的方程可化為:

圓心到直線l的距離為,

所以直線與圓C相切.

3)當時,圓C方程為,圓心為,半徑為10,

與直線,即相切,所以橢圓的左準線為,

又橢圓過點,則,所以,解得,

所以橢圓方程為.

在橢圓上任取一點),設定點,,

恒成立,

所以恒成立,

所以,故,

所以,或者.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】過拋物線y2=4x的焦點的直線l與拋物線交于A,B兩點,設點M3,0.若△MAB的面積為,則|AB|=( )

A.2B.4C.D.8

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設函數(shù)g(x)=sinωx(ω0)向左平移個單位長度得到函數(shù)f(x),已知f(x)[0,2π]上有且只有5個零點,則下列結(jié)論正確的是(

A.f(x)的圖象關(guān)于直線對稱

B.f(x)(0,2π)上有且只有3個極大值點,f(x)(0,2π)上有且只有2個極小值點

C.f(x)上單調(diào)遞增

D.ω的取值范圍是[)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù).

1)若函數(shù)的極小值為1,求實數(shù)m的值;

2)若函數(shù)時,其圖象全部都在第一象限,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,以原點O為極點,以x軸正半軸為極軸建立極坐標系,曲線C的極坐標方程為,直線的參數(shù)方程為t為參數(shù)),,點A為直線與曲線C在第二象限的交點,過O點的直線與直線互相垂直,點B為直線與曲線C在第三象限的交點.

1)寫出曲線C的直角坐標方程及直線的普通方程;

2)若,求的面積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】《周易》是我國古代典籍,用描述了天地世間萬象變化.如圖是一個八卦圖,包含乾、坤、震、巽、坎、離、艮、兌八卦(每一卦由三個爻組成,其中表示一個陽爻,表示一個陰爻).若從八卦中任取兩卦,這兩卦的六個爻中恰有一個陽爻的概率為(

A.B.

C.D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】為了提高生產(chǎn)線的運行效率,工廠對生產(chǎn)線的設備進行了技術(shù)改造.為了對比技術(shù)改造后的效果,采集了生產(chǎn)線的技術(shù)改造前后各20次連續(xù)正常運行的時間長度(單位:天)數(shù)據(jù),并繪制了如莖葉圖:

1)(i)設所采集的40個連續(xù)正常運行時間的中位數(shù)m,并將連續(xù)正常運行時間超過m和不超過m的次數(shù)填入下面的列聯(lián)表:

超過

不超過

改造前

改造后

ii)根據(jù)(i)中的列聯(lián)表,能否有99%的把握認為生產(chǎn)線技術(shù)改造前后的連續(xù)正常運行時間有差異?

附:

0.050

0.010

0.001

3.841

6.635

10.828

2)工廠的生產(chǎn)線的運行需要進行維護,工廠對生產(chǎn)線的生產(chǎn)維護費用包括正常維護費、保障維護費兩種.對生產(chǎn)線設定維護周期為T天(即從開工運行到第kT進行維護.生產(chǎn)線在一個生產(chǎn)周期內(nèi)設置幾個維護周期,每個維護周期相互獨立.在一個維護周期內(nèi),若生產(chǎn)線能連續(xù)運行,則不會產(chǎn)生保障維護費;若生產(chǎn)線不能連續(xù)運行,則產(chǎn)生保障維護費.經(jīng)測算,正常維護費為0.5萬元/次;保障維護費第一次為0.2萬元/周期,此后每增加一次則保障維護費增加0.2萬元.現(xiàn)制定生產(chǎn)線一個生產(chǎn)周期(以120天計)內(nèi)的維護方案:,.以生產(chǎn)線在技術(shù)改造后一個維護周期內(nèi)能連續(xù)正常運行的頻率作為概率,求一個生產(chǎn)周期內(nèi)生產(chǎn)維護費的分布列.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】2019新型冠狀病毒感染的肺炎的傳播有飛沫、氣溶膠、接觸等途徑,為了有效抗擊疫情,隔離性防護是一項具體有效措施.某市為有效防護疫情,宣傳居民盡可能不外出,鼓勵居民的生活必需品可在網(wǎng)上下單,商品由快遞業(yè)務公司統(tǒng)一配送(配送費由政府補貼).快遞業(yè)務主要由甲公司與乙公司兩家快遞公司承接:“快遞員”的工資是“底薪+送件提成”.這兩家公司對“快遞員”的日工資方案為:甲公司規(guī)定快遞員每天底薪為70元,每送件一次提成1元;乙公司規(guī)定快遞員每天底薪為120元,每日前83件沒有提成,超過83件部分每件提成5元,假設同一公司的快遞員每天送件數(shù)相同,現(xiàn)從這兩家公司往年忙季各隨機抽取一名快遞員并調(diào)取其100天的送件數(shù),得到如下條形圖:

1)求乙公司的快遞員一日工資y(單位:元)與送件數(shù)n的函數(shù)關(guān)系;

2)若將頻率視為概率,回答下列問題:

①記甲公司的“快遞員”日工資為X(單位:元).求X的分布列和數(shù)學期望;

②小王想到這兩家公司中的一家應聘“快遞員”的工作,如果僅從日收入的角度考慮,請你利用所學過的統(tǒng)計學知識為他作出選擇,并說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】歷史上有不少數(shù)學家都對圓周率作過研究,第一個用科學方法尋求圓周率數(shù)值的人是阿基米德,他用圓內(nèi)接和外切正多邊形的周長確定圓周長的上下界,開創(chuàng)了圓周率計算的幾何方法,而中國數(shù)學家劉徽只用圓內(nèi)接正多邊形就求得的近似值,他的方法被后人稱為割圓術(shù).近代無窮乘積式、無窮連分數(shù)、無窮級數(shù)等各種值的表達式紛紛出現(xiàn),使得值的計算精度也迅速增加.華理斯在1655年求出一個公式:,根據(jù)該公式繪制出了估計圓周率的近似值的程序框圖,如下圖所示,執(zhí)行該程序框圖,已知輸出的,若判斷框內(nèi)填入的條件為,則正整數(shù)的最小值是

A.B.C.D.

查看答案和解析>>

同步練習冊答案