【題目】隨著銀行業(yè)的不斷發(fā)展,市場(chǎng)競(jìng)爭(zhēng)越來越激烈,顧客對(duì)銀行服務(wù)質(zhì)量的要求越來越高,銀行為了提高柜員員工的服務(wù)意識(shí),加強(qiáng)評(píng)價(jià)管理,工作中讓顧客對(duì)服務(wù)作出評(píng)價(jià),評(píng)價(jià)分為滿意、基本滿意、不滿意三種.某銀行為了比較顧客對(duì)男女柜員員工滿意度評(píng)價(jià)的差異,在下屬的四個(gè)分行中隨機(jī)抽出40人(男女各半)進(jìn)行分析比較.對(duì)40人一月中的顧客評(píng)價(jià)“不滿意”的次數(shù)進(jìn)行了統(tǒng)計(jì),按男、女分為兩組,再將每組柜員員工的月“不滿意”次數(shù)分為5組:,,,,,得到如下頻數(shù)分布表.
分組 | |||||
女柜員 | 2 | 3 | 8 | 5 | 2 |
男柜員 | 1 | 3 | 9 | 4 | 3 |
(1)在答題卡所給的坐標(biāo)系中分別畫出男、女柜員員工的頻率分布直方圖;分別求出男、女柜員員工的月平均“不滿意”次數(shù)的估計(jì)值,試根據(jù)估計(jì)值比較男、女柜員員工的滿意度誰高?
(2)在抽取的40名柜員員工中:從“不滿意”次數(shù)不少于20的員工中隨機(jī)抽取3人,并用X表示隨機(jī)抽取的3人中女柜員工的人數(shù),求X的分布列和數(shù)學(xué)期望.
【答案】(1)直方圖見解析;男、女柜員月平均“不滿意”次數(shù)的估計(jì)值分別為,;女柜員員工的滿意度高;(2)分布列見解析,
【解析】
(1)分別列出女柜員、男柜員的頻率分布表,再畫出女柜員、男柜員的頻率分布直方圖;計(jì)算女柜員、男柜員員工的月平均“不滿意”次數(shù),比較即可得出結(jié)論.
(2)在抽取的40名柜員員工中,“不滿意”次數(shù)不少于20的柜員員工共有5人,其中女員工2人,男員工3人,從“不滿意”次數(shù)不少于20的柜員員工中隨機(jī)抽取3人,故X的所有可能取值為0,1,2,分別寫出分布列,求出數(shù)學(xué)期望值.
(1)對(duì)于女柜員列出頻率分布表如下,
分組 | [0,5) | [5,10) | [10,15) | [15,20) | [20,25] |
女柜員 | 2 | 3 | 8 | 5 | 2 |
頻率 | 0.1 | 0.15 | 0.4 | 0.25 | .0.1 |
對(duì)于男柜員列出頻率分布表如下;
分組 | [0,5) | [5,10) | [10,15) | [15,20) | [20,25] |
男柜員 | 1 | 3 | 9 | 4 | 3 |
男柜員 | 0.05 | 0.15 | 0.45 | 0.2 | 0.15 |
分別求出每組的頻率,畫出的直方圖如圖.
女柜員 男柜員
設(shè)女、男柜員員工的月平均“不滿意”次數(shù)分別為,,
則,
,
,所以女柜員員工的滿意度比男柜員員工的滿意度要高.
(2)在抽取的40名柜員員工中,“不滿意”次數(shù)不少于20的柜員員工共有5人,其中女員工2人,男員工3人,
從“不滿意”次數(shù)不少于20的柜員員工中隨機(jī)抽取3人,故X的所有可能取值為0,1,2,
則,,,
所以X的分布列為
X | 0 | 1 | 2 |
P |
所以.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在直三棱柱ABCA1B1C1中,AB⊥AC,AB=2,AC=4,AA1=2,=λ.
(1)若λ=1,求直線DB1與平面A1C1D所成角的正弦值;
(2)若二面角B1- A1C1-D的大小為60°,求實(shí)數(shù)λ的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在三棱錐中,BO、AO、CO所在直線兩兩垂直,且AO=CO,∠BAO=60°,E是AC的中點(diǎn),三棱錐的體積為
(1)求三棱錐的高;
(2)在線段AB上取一點(diǎn)D,當(dāng)D在什么位置時(shí),和的夾角大小為
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù),.
(1)若曲線在點(diǎn)處的切線與軸平行,求;
(2)當(dāng)時(shí),函數(shù)的圖象恒在軸上方,求的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,橢圓過點(diǎn),焦點(diǎn),圓的直徑為.
(1)求橢圓及圓的方程;
(2)設(shè)直線與圓相切于第一象限內(nèi)的點(diǎn),直線與橢圓交于兩點(diǎn).若的面積為,求直線的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角梯形(如圖1),,,,,為線段中點(diǎn).將沿折起,使平面平面,得到幾何體(如圖2).
(1)求證:平面;
(2)求與平面所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】長(zhǎng)方體中,F是AB的中點(diǎn),直線平面,.
(Ⅰ)求長(zhǎng)方體的體積;
(Ⅱ)求二面角的余弦值的大小.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】華為董事會(huì)決定投資開發(fā)新款軟件,估計(jì)能獲得萬元到萬元的投資收益,討論了一個(gè)對(duì)課題組的獎(jiǎng)勵(lì)方案:獎(jiǎng)金(單位:萬元)隨投資收益(單位:萬元)的增加而增加,且獎(jiǎng)金不超過萬元,同時(shí)獎(jiǎng)金不超過投資收益的.
(1)請(qǐng)分析函數(shù)是否符合華為要求的獎(jiǎng)勵(lì)函數(shù)模型,并說明原因;
(2)若華為公司采用模型函數(shù)作為獎(jiǎng)勵(lì)函數(shù)模型,試確定正整數(shù)的取值集合.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com