設函數(shù).
(Ⅰ)若,求的最小值;
(Ⅱ)若當,求實數(shù)的取值范圍.

(Ⅰ)1(Ⅱ)

解析試題分析:(Ⅰ)時,,.
時,;當時,.
所以上單調(diào)減小,在上單調(diào)增加
的最小值為
(Ⅱ)
時,,所以上遞增,
,所以,所以上遞增,
,于是當時, .
時,由
時,,所以上遞減,
,于是當時,,所以上遞減,
,所以當時,.
綜上得的取值范圍為.
考點:利用函數(shù)導數(shù)求函數(shù)的最值,判定函數(shù)單調(diào)性
點評:本題第二問用到了對函數(shù)導函數(shù)的再次求導,從而確定導函數(shù)的單調(diào)區(qū)間,導函數(shù)的最值導數(shù)值的范圍,進而得到原函數(shù)的單調(diào)性,難度較大

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

已知函數(shù)
(Ⅰ)當時,求的單調(diào)區(qū)間;
(Ⅱ)設函數(shù)在點處的切線為,直線軸相交于點.若點的縱坐標恒小于1,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知函數(shù),設曲線在與軸交點處的切線為,的導函數(shù),滿足
(1)求的單調(diào)區(qū)間.
(2)設,,求函數(shù)上的最大值;

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(本小題滿分12分)已知函數(shù).(
(1)若函數(shù)有三個零點,且,,求函數(shù) 的單調(diào)區(qū)間;
(2)若,,試問:導函數(shù)在區(qū)間(0,2)內(nèi)是否有零點,并說明理由.
(3)在(Ⅱ)的條件下,若導函數(shù)的兩個零點之間的距離不小于,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(本題滿分15分)
已知函數(shù)
(Ⅰ)當時,試判斷的單調(diào)性并給予證明;
(Ⅱ)若有兩個極值點
(i) 求實數(shù)a的取值范圍;
(ii)證明:。 (注:是自然對數(shù)的底數(shù))

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(本小題滿分12分)
已知函數(shù)
(Ⅰ)若函數(shù),處取得極值,求的值;
(Ⅱ)若,函數(shù)上是單調(diào)函數(shù),求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知函數(shù)(a為實常數(shù)).
(1)若,求證:函數(shù)在(1,+.∞)上是增函數(shù);
(2)求函數(shù)在[1,e]上的最小值及相應的值;
(3)若存在,使得成立,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(本小題滿分15分)
若函數(shù)時取得極值,且當時,恒成立.
(1)求實數(shù)的值;
(2)求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(本小題滿分12分)
已知函數(shù)
(Ⅰ)討論函數(shù)在定義域內(nèi)的極值點的個數(shù);
(Ⅱ)若函數(shù)處取得極值,對,恒成立,
求實數(shù)的取值范圍;
(Ⅲ)當時,試比較的大。

查看答案和解析>>

同步練習冊答案