已知函數(shù)(a為實(shí)常數(shù)).
(1)若,求證:函數(shù)在(1,+.∞)上是增函數(shù);
(2)求函數(shù)在[1,e]上的最小值及相應(yīng)的值;
(3)若存在,使得成立,求實(shí)數(shù)a的取值范圍.

(1)當(dāng)時(shí),,當(dāng);
(2)當(dāng)時(shí),的最小值為1,相應(yīng)的x值為1;當(dāng)時(shí),
的最小值為,相應(yīng)的x值為;當(dāng)時(shí),的最小值為,
相應(yīng)的x值為
(3)

解析試題分析:(1)當(dāng)時(shí),,當(dāng),,
故函數(shù)上是增函數(shù).         4分
(2),當(dāng),
,上非負(fù)(僅當(dāng),x=1時(shí),),故函數(shù)上是增函數(shù),此時(shí).                6分
,當(dāng)時(shí), ;當(dāng)時(shí),,此時(shí)
是減函數(shù); 當(dāng)時(shí),,此時(shí)是增函數(shù).故

,上非正(僅當(dāng),x=e時(shí),),故函數(shù)上是減函數(shù),此時(shí).    8分
綜上可知,當(dāng)時(shí),的最小值為1,相應(yīng)的x值為1;當(dāng)時(shí),
的最小值為,相應(yīng)的x值為;當(dāng)時(shí),的最小值為,
相應(yīng)的x值為.        10分
(3)不等式,可化為
, ∴且等號(hào)不能同時(shí)取,所以,即,
因而)      12分
),又,       14分
當(dāng)時(shí),,
從而(僅當(dāng)x=1時(shí)取等號(hào)),所以

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

設(shè)為實(shí)數(shù),函數(shù)。
①求的單調(diào)區(qū)間與極值;
②求證:當(dāng)時(shí),

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(本題滿分12分)
設(shè)函數(shù)(a>0,b,cÎR),曲線在點(diǎn)P(0,f (0))處的切線方程為
(Ⅰ)試確定b、c的值;
(Ⅱ)是否存在實(shí)數(shù)a使得過(guò)點(diǎn)(0,2)可作曲線的三條不同切線,若存在,求出a的取值范圍;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

設(shè)函數(shù).
(Ⅰ)若,求的最小值;
(Ⅱ)若當(dāng)時(shí),求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知函數(shù)上為增函數(shù),且,為常數(shù),.
(1)求的值;
(2)若上為單調(diào)函數(shù),求的取值范圍;
(3)設(shè),若在上至少存在一個(gè),使得成立,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知函數(shù)
(1) 若的極值點(diǎn),求在[1,]上的最大值;
(2) 若在區(qū)間[1,+)上是增函數(shù),求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(本小題滿分14分)
已知函數(shù)處有極小值。
(1)求函數(shù)的解析式;
(2)若函數(shù)只有一個(gè)零點(diǎn),求的取值范圍。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(本題滿分10分)  如圖,由y=0,x=8,y=x2圍成的曲邊三角形,在曲線弧OB上求一點(diǎn)M,使得過(guò)M所作的y=x2的切線PQ與OA,AB圍成的三角形PQA面積最大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(本小題滿分12分)
設(shè)函數(shù)的圖像與直線相切于點(diǎn).
(Ⅰ)求的值;
(Ⅱ)討論函數(shù)的單調(diào)性.

查看答案和解析>>

同步練習(xí)冊(cè)答案